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Abstract

In this manuscript, we study discrete-time dynamics of systems that arise in physics

and information theory, and the measure of disorder in these systems known as dy-

namical entropy. The study of dynamics in classical systems is done from two distinct

viewpoints: random walks and dynamical systems. Random walks are probabilistic

in nature and are described by stochastic processes. On the other hand, dynami-

cal systems are described algebraically and deterministic in nature. The measure of

disorder from either viewpoint is known as dynamical entropy.

Entropy is an essential notion in physics and information theory. Motivated by

the study of disorder for the positions and velocities of gas molecules, the notion of

entropy was first introduced mathematically by Boltzmann near the end of the 19th

Century and gives rise to the second law of thermodynamics. Almost eighty years

after Boltzmann, Shannon became the father of the new field of information theory

when he produced his groundbreaking works where he used entropy as a measure

of information transfer between two sources. In the last two years of the 1950’s,

Kolmogorov and Sinai extended the notions of Boltzmann to a dynamical entropy.

The Kolmogorov-Sinai dynamical entropy gives a measure for the disorder of a system

of particles (e.g. gas molecules) averaged over time, quantifying the uncertainty in

the dynamics of a system.

The advent of quantum mechanics and its pervasiveness in nature has required the

development of non-commutative generalizations of dynamics and dynamical entropy

to the quantum regime. Many of each have been proposed. In particular, we recall

the definitions of quantum random walks, dynamical systems and Markov chains.
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We motivate each generalization by relating to its classical counterpart. Quantum

dynamical entropy (QDE) is a generalization of the Kolmogorov-Sinai dynamical

entropy to quantum mechanics. There have been numerous definitions for QDE

beginning with that of Connes, Narnhofer and Thirring in 1987. We focus on the semi-

classical approach given by Słomczyński and Życzkowski in 1994 and the quantum

Markov chain approach which started with Accardi, Ohya and Watanabe in 1997.

Linearity of a dynamical entropy means that the dynamical entropy of the n-fold

composition of a dynamical map with itself is equal to n times the dynamical entropy

of the map for every positive integer n. We show that the quantum dynamical entropy

introduced by Słomczyński and Życzkowski is nonlinear in the time interval between

successive measurements of a quantum dynamical system. This is in contrast to

Kolmogorov-Sinai dynamical entropy for classical dynamical systems, which is linear

in time. We also compute the exact values of quantum dynamical entropy for the

Hadamard walk with varying Lüders-von Neumann instruments and partitions.

In 1948, Shannon proved the Source Coding Theorem which gives upper and lower

bounds on the minimal expected codeword length in terms of the entropy of a ran-

dom variable. This theorem can be leveraged to give the minimal expected average

codeword length for a string of symbols in terms of entropy rate, which can be in-

terpreted as the dynamical entropy of a stochastic process. In 1994, Schumacher

defined indeterminate-length quantum codes and proved a Quantum Source Coding

Theorem. We introduce the notion of stochastic ensembles of pure states and give a

novel representation in terms of quantum Markov chains. Moreover, this representa-

tion allows us to extend the Quantum Source Coding Theorem, giving the minimal

expected average codeword length of an indeterminate-length quantum code in terms

of quantum dynamical entropy.

This manuscript includes joint work with Dr. George Androulakis (Mathematics,

University of South Carolina).

vii



www.manaraa.com

Table of Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Dynamics and Entropy in Classical Systems . . . . . . . . . . . . . . 1

1.2 Dynamics in Quantum Systems . . . . . . . . . . . . . . . . . . . . . 3

1.3 Quantum Dynamical Entropy . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 2 Dynamics in a Classical Setting . . . . . . . . . . . . . 7

2.1 Random Walks in Probability Theory . . . . . . . . . . . . . . . . . . 7

2.2 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Symbolic Dynamics: Random Walks and Dynamical Systems from
an Algebraic Point of View . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Dynamical Systems from the Algebraic Point of View . . . . . . . . . 16

Chapter 3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 State Space and Phase Space . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Observables and Instruments . . . . . . . . . . . . . . . . . . . . . . . 21

Chapter 4 Non-Commutative Random Walks . . . . . . . . . . . . 25

viii



www.manaraa.com

4.1 Quantum Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Quantum Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 5 Entropy in Classical Systems . . . . . . . . . . . . . . . 38

5.1 Entropy in Dynamical Systems . . . . . . . . . . . . . . . . . . . . . 38

5.2 Entropy in Probability Theory . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Entropy in Symbolic Dynamics: The connection between entropy
rate and KS entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Differences between entropy rate and KS entropy . . . . . . . . . . . 47

5.5 Entropy in Data Compression . . . . . . . . . . . . . . . . . . . . . . 50

Chapter 6 Słomczyński-Życzkowski Entropy . . . . . . . . . . . . 55

6.1 SZ Entropy: Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 SZ entropy with Lüders - von Neumann Instruments . . . . . . . . . 60

6.3 SZ Entropy of the Hadamard walk . . . . . . . . . . . . . . . . . . . 64

Chapter 7 Quantum Markov Chain Entropy . . . . . . . . . . . . 79

7.1 QMC Entropy: Definition . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Accardi-Ohya-Watanabe Entropy . . . . . . . . . . . . . . . . . . . . 82

7.3 Quantum Data Compression using QMC Dynamical Entropy . . . . . 85

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

ix



www.manaraa.com

Chapter 1

Introduction

In this manuscript, we study discrete-time dynamics of systems that arise in physics

and information theory, and the measure of disorder in these systems known as dy-

namical entropy.

1.1 Dynamics and Entropy in Classical Systems

The study of dynamics in classical systems is done from two distinct viewpoints:

random walks and dynamical systems. The origins of the classical random walk traces

back to the study of gambling problems, such as the gambler’s ruin problem which

dates back to 1656. Random walks are probabilistic in nature and are described by

stochastic processes. Over the years random walks have seen much success in many

fields ranging from finance ([60]), computer optics ([27]) and computer science ([49])

to biology ([26]) and neurology ([25]). On the other hand, a dynamical system is a

probability space together with a measure-preserving automorphism, thereby giving

deterministic dynamics. Dynamical systems are often used in physics to model an

ensemble of particles whose state varies over time. Motivated by his study of the

three-body problem in celestial mechanics, many people regard Henri Poincaré as the

founder of dynamical systems (see e.g. [47]).

In both random walks and dynamical systems, entropy is used as a measure of

uncertainty or chaos. In physics and dynamical systems theory, entropy is used to

describe chaos and gives rise to the second law of thermodynamics. In information

theory, entropy is used to quantify many properties of information (e.g. the resources

1
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needed to store information or data compression; see [33, 54]). The notion of en-

tropy was first introduced mathematically by Boltzmann near the end of the 19th

century in [15] as a tool to measure disorder for the positions and velocities of gas

molecules, although the name “entropy” dates back to Clausius in 1865 according to

[65]. Almost eighty years after Boltzmann, Shannon became the father of the new

field of information theory when he produced his groundbreaking works where he

used entropy as a measure of information transfer between two sources in [54, 55].

The entropy described by both Boltzmann and Shannon is static. That is, it is

used to quantify the amount of disorder in a system at a fixed point in time. To

quantify the amount of disorder in the dynamics of a system, the limit of the time-

averaged entropy of joint probabilities is used. Due to the Césaro Mean Theorem, this

limit can also be thought of as disorder of a system at the present time conditioned

on the past. For stochastic processes, this dynamical entropy is known as entropy

rate. In dynamical systems, this dynamical entropy was introduced by Kolmogorov

and Sinai in 1958 and is now referred to as Kolmogorov-Sinai (KS) entropy ([32,

57]). Motivated by the problem of characterizing isometric dynamical systems, the

KS entropy is a metric invariant for dynamical systems. The connection between

entropy rate and KS entropy can be seen through the symbolic dynamics space which

is discussed in Sections 2.3 and 5.3.

Another important property of KS entropy is its linearity in time. Linearity of

the KS entropy means that, for a dynamical system (Ω,Σ, µ, f) and a positive integer

n, the KS entropy of the n-fold composition of f is equal to n times the KS entropy

of f and is given by the equation

hKS(fn) = nhKS(f), for all n ∈ N.

In contrast, the entropy rate of a stochastic process is not linear in time due to its

probabilistic nature. This difference, amongst others, is discussed in Section 5.4.

2
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1.2 Dynamics in Quantum Systems

The advent of quantum mechanics and its pervasiveness in nature has required the

development of non-commutative generalizations of dynamics to the quantum regime.

Many descriptions of discrete-time, non-commutative dynamics have been proposed

and studied over the years. In particular, we recall the definitions of quantum random

walks, dynamical systems and Markov chains in Chapter 4.

Quantum random walks (QRWs) are a non-commutative generalization of dy-

namics from the random walk point of view, the properties of which are significantly

different from their classical courterparts (see e.g. [8]). QRWs were first introduced

by Aharonov et al. in [5] and independently by Meyer in [43] to describe closed system

dynamics. Closed systems in quantum mechanics are described by unitary operators

or, more precisely, unitary transformations; QRWs for closed systems are no different

and are referred to as unitary QRWs (UQRWs). In 2012, a new variant of the QRW

was introduced by Attal et al. in [12] to describe open system dynamics; i.e. a system

coupled with an environment. QRWs for open systems are referred to as open QRWS

(OQRWs). The evolution of an OQRW is described by a completely positive trace

preserving map or quantum channel. The study of QRWs has enjoyed much interest

in recent years (see e.g. [7, 29, 30, 34, 48, 63]), and applications have been found

in many areas including quantum computing [35, 37], the study brain networks [41],

and biology [50, 51]. In their seminal paper on OQRWs ([12]), the authors show that

unitary and open QRWs differ only by a single step in their realization procedure.

Namely, the step that requires decoherence and hence simulation of interaction with

an environment. In Subsection 4.1.3, we develop this idea further.

Quantum dynamical systems (QDSs) are a non-commutative generalization of dy-

namical systems motivated by the algebraic representation of automorphisms on a

probability space (Ω,Σ, µ) as L∞(Ω). L∞(Ω) can then be embedded into a commu-

tative subalgebra of a matrix algebra M , the whole of which is non-commutative (see

3
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e.g. [11]). Matrix algebras are C∗-algebra and the general description of QDSs is

done using C∗-algebra quantum mechanics.

Quantum Markov chains (QMCs) were first introduced by Accardi in [1]. A

stochastic process is generally defined by its joint probability mass functions (pmfs).

A Markov process is a special case of a stochastic process in which the joint pmf for

one step into the future is only influenced by its current distribution. Therefore a

Markov process can be uniquely defined by its initial distribution, µ, and a family

of conditional expectation operators, (Pn)n∈N. From this viewpoint, we can denote

the Markov process as the pair {µ, Pn}. The QMC approach to non-commutative

dynamics is based on this viewpoint. In QMCs, the initial distribution is represented

by a density operator, ρ, in a matrix algebra and the conditional expectations are

generalized to a family of transition expectations, (En)n∈N, giving a QMC {ρ, En}. The

QMC approach is then a straightforward generalization of dynamics from the random

walk perspective. On the other hand, by careful selection of transition expectations,

the QMC approach can also be used to describe the course-grained measurements

of a QDS. This viewpoint allows us to view QMCs as a generalization of dynamical

systems as well. We will discuss this point in Sections 4.3 and 7.

1.3 Quantum Dynamical Entropy

The main focus of this work is the description of dynamical entropy in quantum

systems. There have been many successful attempts to generalize KS entropy to a

quantum dynamical entropy (QDE) in [18, 6, 59, 44, 3, 38], beginning with Connes,

Narnhofer and Thirring in 1987. The Connes-Narnhofer-Thirring (CNT) [18], Alicki-

Fannes (AF) [6], Accardi-Ohya-Watanabe (AOW) [3] and Kossakowski-Ohya-Watana-

be (KOW) [38] entropies have had the most attention in the literature as they have

been computed exactly for several examples of quantum dynamical systems. More-

over, the relationship between the different definitions is not fully understood, al-

4
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though some work in this direction has been done (e.g. [4, 61, 46, 14]).

We are particular interested in the Słomczyński-Życzkowski (SZ) quantum dynam-

ical entropy [59] and the QMC approach to dynamical entropy introduced in [3] in

terms of the AOW entropy. SZ entropy uses a semi-classical approach and was devel-

oped using the general notions of measurements, instruments, phase space and state

space developed by Edwards in [23], and Davies and Lewis in [21, 20]. In contrast to

both the CNT and AF entropies, SZ dynamical entropy can obtain nonzero values for

quantum systems with finite-dimensional Hilbert spaces. Quantum algorithms are a

natural example where this property is desirable.

In the past four decades there has been a lot of interest in trying to develop

a quantum computer which requires a new field of computing, known as quantum

computing (see [45]). In 1996, Lov Grover created a quantum database searching

algorithm, now referred to as Grover’s algorithm, which was shown to be quadrati-

cally faster than the classical analogue ([28]). Certain quantum algorithms have even

obtained exponential speed-up over their classical counterparts, such as Shor’s algo-

rithm for factorizing integers ([56]). To demonstrate the applicability of SZ dynamical

entropy for quantum algorithms, we will apply it to UQRWs which have been shown

to be universal for quantum computation in [40] and give exact computations of the

SZ dynamical entropy for the Hadamard walk measured with varying Lüders-von

Neumann instruments. In doing so, we also give explicit calculations verifying the

nonlinearity of SZ entropy. This is in contrast to KS entropy, which is linear in time,

and gives further evidence to the probabilistic nature of measurements in a quantum

system.

The QMC approach to dynamical entropy has been studied by many. It has been

modified from its original context in terms of AOW entropy to include an approach

for the study of the AF entropy developed by Tuyls in [61]. AF entropy was originally

introduced in the context of QDSs and the approach of Tuyls lays the groundwork

5
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for the QMC representation for QDSs. A generalization of both QMC approaches

was given in [38], where the authors introduced the KOW entropy. Furthermore, in

Section 7.2, we give a QMC approach for SZ dynamical entropy. This representation

allows us to show that the AOW entropy is also nonlinear in time.

In Section 7.3, we recall the notion of indeterminate-length quantum codes which

were first considered by Schumacher in 1994 ([52]). In subsequent work with West-

moreland, Schumacher is able to extend the Source Coding Theorem to a quantum

analog, establishing upper and lower bounds on the minimal expected quantum data

compression in terms of von Neumann entropy. In classical data compression, the

Source Coding Theorem can be leveraged to give the minimal average expected data

compression rate in terms of the entropy rate of the corresponding stochastic process.

We introduce the notion of a stochastic ensemble of pure states for indeterminate-

length quantum codes and provide a QMC whose dynamical entropy is equal to the

minimal average expected quantum data compression rate in Theorem 7.3.9.

Throughout this manuscript we will be interested in discrete-time processes. When-

ever suitable definitions for continuous time have been made, we will try to mention

it and give references to related material.

6
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Chapter 2

Dynamics in a Classical Setting

In this chapter we will recall two different formalisms of dynamics in a classical (or

commutative setting). We recall random walks in probability theory in Section 2.1

and try to highlight the graph-theoretic intuitions of these random processes. In

Section 2.2, we recall dynamical systems which are dynamics from an algebraic point

of view. We then introduce symbolic dynamics of a random walk in Section 2.3

which is a dynamical system connecting the two different pictures of dynamics. We

finish off the chapter by delving more deeply into the algebraic structure of dynamical

systems in Section 2.4, giving us a first peek at quantum dynamical systems. All of

the systems of this chapter will have entropy introduced on them in Chapter 5 and

will be extended to non-commutative (or quantum) settings in Chapter 4.

2.1 Random Walks in Probability Theory

Let (Ω,Σ, µ) be a probability space and let (E, E) be a measurable space. Whenever

a set Ω which is finite or countably infinite is equipped with the power set σ-algebra

P(Ω), we will refer to the measurable space (Ω,P(Ω) (or simply the set Ω) as a

discrete space. An (Ω, E) random variable X is a measurable map X : Ω→ E.

For any S ∈ E , the probability that X takes values in S is given by µ(X ∈ S) :=

µ(X−1(S)). We say that the random variable X is discrete whenever its range E is

a discrete space. In that case, X is determined by its probability mass function

(pmf) pX : E → [0, 1] given by pX(x) = µ(X = x) for each x ∈ E. We will simply

write p(x) as opposed to pX(x) when there is no confusion about the random variable.

7
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We will be mainly interested in discrete random variables in this manuscript.

Given a finite collection, (Xk)nk=1, of (Ω, E) discrete random variables the joint

pmf of (X1, . . . , Xn) is given by

pX1,...,Xn(x1, . . . , xn) = µ(X1 = x1, . . . , Xn = xn) for all x1, . . . , xn ∈ E. (2.1)

Furthermore, (X1, . . . , Xn) is a discrete (Ω, En) random variable.

The conditional pmf of Xn given (X1, . . . , Xn−1) is given by

pXn|(X1,...,Xn−1)(xn|x1, . . . , xn−1) := µ(Xn = xn|X1 = x1, . . . , Xn−1 = xn−1)

= pX1,...,Xn(x1, . . . , xn)
pX1,...,Xn−1(x1, . . . , xn−1) , (2.2)

for all x1, . . . , xn ∈ E. Whenever there is no confusion about the random variables

in question we simply write p(x1, . . . , xn) for the joint pmf and p(xn|x1, . . . , xn−1) for

the conditional pmf.

If (Ω,Σ, µ) is a probability space and (E, E) is a measurable space, then a (dis-

crete time) (Ω, E) stochastic process is an indexed sequence of (Ω, E) random

variables. Throughout this manuscript we will only consider discrete time stochastic

processes and the sequences will all be indexed by N, where the index is meant to

represent time. Whenever (E, E) is a discrete space we will refer to any stochastic

process with range in E as a discrete stochastic process. In this case the stochas-

tic process, X = (Xn)∞n=0, is determined by its joint pmf, denoted by pX, and given

by pX(x1, . . . , xn) = px1,...,Xn(x1, . . . , xn) for each n ∈ N and x1, . . . , xn ∈ E.

Given any discrete stochastic process there is a natural way of viewing the as-

sociated joint and conditional probabilities as being associated to a random walker

moving around on a graph. We call this perspective the classical random walk per-

spective and describe it below. Fix a discrete (Ω, E) stochastic process X. Then,

from the classical random walk perspective, we interpret px1(x) as the probability

that a random walker inhabits the site x initially at time 1 and pXn(x) as the proba-

bility that a random walker inhabits the site x at time n, for any x ∈ E and n ∈ N.

8
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Furthermore, for any x1, . . . , xn ∈ E and n ∈ N, we interpret p(x1, . . . , xn) as the

probability that a random walker takes the path x1 → x1 → · · · → xn at times

0, 1, . . . , n. Moreover, if there is a specific graph the random walker is moving on,

the conditional probabilities reflect this by giving probability 0 whenever there is no

edge for the walker to traverse.

A discrete stochastic process (Xn)∞n=1 is called stationary whenever its joint pmf

is invariant with respect to shifts of the time index; i.e.

µ(X1 = x1, . . . , Xn = xn) = µ(Xl = x1, . . . , Xn+l = xn),

for all n, l ∈ N and x1, . . . , xn ∈ E. In the literature, a stationary stochastic process

is sometimes referred to as being time invariant (see e.g. [19, Page 61]).

A simple example of a discrete stochastic process is one in which each random

variable depends only on the one proceeding it in the sequence; i.e.

µ(Xn+1 = xn+1|x1 = x1, . . . , Xn = xn) = µ(Xn+1 = xn+1|Xn = xn), (2.3)

for all n ∈ N and x1, . . . , xn+1 ∈ E. A discrete stochastic process which satisfies

Equation (2.3) is referred to as a Markov process. In particular, we are interested

in those discrete Markov processes, X = (Xn)∞n=1, whose conditional pmfs do not

vary with time; i.e.

µ(X2 = x|X1 = y) = µ(Xn+1 = x|Xn = y) for all x, y ∈ E, and n ∈ N. (2.4)

In this case, we will set px,y := µ(X2 = x|X1 = y) and define the |E| × |E| matrix

P to have (x, y)-entry given by px,y, for all x, y ∈ E. Then P is a transition

(column-stochastic) matrix; i.e. for all x, y ∈ E, 0 ≤ px,y ≤ 1 and, for all y ∈ E,∑
x∈E px,y = 1. From the classical random walk perspective, the (x, y)-entry of P ,

px,y, is interpreted as the conditional probability that a random walker will move in

one step from site y to site x. Moreover, px,y will be equal to 0 whenever (y, x) is not

a (possibly directed) edge on the corresponding graph.

9
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Given a discrete measurable space (E,P(E)), we will represent a probability mea-

sure µ on (E,P(E)) as the column vector µ = {µe}e∈E, where µe := µ({e}) for each

e ∈ E, which we will refer as a probability vector. Then, given a transition matrix

P on E, we define Pµ by matrix multiplication. We say that µ is P -invariant

whenever Pµ = µ. In particular, whenever X is a discrete (Ω, E) Markov process

governed by the transition matrix P , we take the initial measure µ to be px1 . In this

case, notice that X is stationary if and only if px1 is P -invariant.

2.2 Dynamical Systems

Let (Ω,Σ) be a measurable space. Define Par(Ω) to be the collection of all finite or

countably infinite measurable partitions of Ω. Define a partial ordering on Par(Ω)

such that, for any C,D ∈ Par(Ω), D ≤ C whenever, for every D ∈ D there exists

CD ⊆ C such that D = ∪CD. If D ≤ C we say that C is finer than D or that D is

coarser than C.

Whenever Ω is a discrete space we will refer to the partition of Ω into singletons

{{ω}}ω∈Ω as the atomic partition. In this case it is clear that the atomic partition

A of Ω is countable and measurable; i.e. A ∈ Par(Ω). Furthermore, in this case, A is

the finest partition in Par(Ω); i.e. C ≤ A for any C ∈ Par(Ω).

For any C,D ∈ Par(Ω), the join (or least upper bound) of C and D is given by

the partition C ∨ D which contains all sets of the form C ∩ D for all C ∈ C and

D ∈ D. Given a finite collection of partitions {Ck}nk=1 ⊆ Par(Ω), the join ∨nk=1Ck can

be defined recursively from the join of two partitions so that ∨nk=1Ck is the partition

containing exactly the sets of the form ∩nk=1Ck, where Ck ∈ Ck for all 1 ≤ k ≤ n.

Fix a probability space (Ω,Σ, µ). Given any partition C ∈ Par(Ω), consider the

discrete space (C,P(C)). We then define the probability measure associated to

C, denoted by µC, to be given by

µC(C) = µ(C) for each C ∈ C. (2.5)

10
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The measure µC can be thought of as a course-graining of the measure µ. (This idea of

course-graining will be discussed further in the paragraph following Example 3.2.3.)

Indeed, one can easily define µC as a restriction of µ on (Ω,Σ) analogously to above

and think of the sets C ∈ C as the possible outcomes of a particular measurement.

Measurements will be discussed in further detail in Chapter 3.

We also can now draw our first connection to random walks from probability

theory introduced in Section 2.1. To this end, for each C ∈ Par(Ω) we define a

discrete (Ω, C) random variable XC by setting XC(ω) = C whenever ω ∈ C, for any

C ∈ C. It is easy to see that the pmf of XC is equal to µC; i.e.

pXC(C) = µC for all C ∈ C. (2.6)

Furthermore, given any finite collection of partitions (Ck)nk=1 ∈ Par(Ω), it is easy to

see that

pXC1 ,...,XCn (C1, . . . , Cn) = µ∨n
k=1Ck(C1 ∩ · · · ∩ Cn), (2.7)

where Ck ∈ Ck for all k ∈ {1, . . . , n} and the joint pmf pXC1 ,...,XCn is given by Equa-

tion (2.1).

Next, we recall that, for any two sets C,D ∈ Σ, the conditional probability of

C given D is given by µ(C|D) := µ(C ∩ D)/µ(D). Given a partition C ∈ Par(Ω)

and a set D ∈ Σ, we define the conditional probability measure of C given D

to be given by µC|D(C) = µ(C|D) for all C ∈ C. Further, given any two partitions

C,D ∈ Par(Ω), we define the conditional probability measure of C given D to

be given by µC|D(C|D) = µC|D(C) for all C ∈ C and D ∈ D. Again, it is clear that

pXC |XD(C|D) = µC|D(C|D) for all C ∈ C and D ∈ D, (2.8)

where the conditional pmf pXC |XD is given by Equation (2.2).

Next we wish to introduce some dynamics on the probability space (Ω,Σ, µ).

This role will be played by a measurable map f : Ω → Ω. We call the quadruple

11
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(Ω,Σ, µ, f) a dynamical system (DS). Furthermore, whenever µ(A) = µ(f−1(A))

for all A ∈ Σ, we say that µ is f-invariant and call the DS (Ω,Σ, µ, f) stationary.

It is worth noting that stationary DSs are often referred to as measure-preserving in

the literature.

Remark 2.2.1. In the literature it is common to only refer to (Ω,Σ, µ, f) as a DS

whenever µ is f -invariant. We do not adopt that convention here.

Remark 2.2.2. In Section 2.1, the dynamics are described by a stochastic process.

Indeed, in the case of time-homogeneous Markov processes governed by a transition

matrix P , it is easy to see that P describes explicitly the dynamics of the system

(which are probabilistic in nature). For a DS (Ω,Σ, µ, f), the dynamics are played

by a deterministic map making the evolution fundamentally different than that of

stochastic processes. However, we can still associate probabilities to the dynamics via

the probability measures described in Equations (2.6), (2.7) and (2.8).

Fix a DS (Ω,Σ, µ, f) and a partition C ∈ Par(Ω). For each k ∈ N0, where N0 =

N ∪ {0}, define the kth-preimage of C under f by f−k(C) := {f−k(C)}C∈C, where f 0

denotes the identity map. Note that, for each C ∈ Par(Ω), f−1(C) ∈ Par(Ω) and hence

f−k(C) ∈ Par(Ω) for every k ∈ N0. The probabilistic description of the dynamical

system is then given by the family of probability measures (µ∨n−1
k=0f

−k(C))∞n=1, given in

Equation (2.5). We will refer to the family (µ∨n−1
k=0f

−k(C))∞n=1 as the joint probabilities

of (Ω,Σ, µ, f) with respect to C. These joint probabilities can also be thought

of as the joint pmfs of the appropriate stochastic process as in Equation (2.7). For

any n ∈ N and C1, . . . , Cn ∈ C, the probability µ∨n−1
k=0f

−k(C)(C1 ∩ · · · ∩ f−(n−1)(Cn))

can be thought of as the probability of a system whose dynamics are determined by

f being measured at times 1, 2, . . . , n with outcomes C1, C2, . . . , Cn. We will discuss

measurements further in Chapter 3. Due to this interpretation of measurements at

subsequent times, we would like to introduce the following notation for the joint

12
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probabilities of (Ω,Σ, µ, f):

µ(f,C)
n (C1, . . . , Cn) := µ∨n−1

k=0f
−k(C)(C1 ∩ · · · ∩ f−(n−1)(Cn)). (2.9)

Remark 2.2.3. Given a DS (Ω,Σ, µ, f) and a partition C ∈ Par(Ω), it is clear that

∨n−1
k=0f

−k(C) consists exactly of sets of the form f−(n−1)(Cn) ∩ · · · ∩ f−1(C2) ∩C1, for

all C1, . . . , Cn ∈ C.

2.3 Symbolic Dynamics: Random Walks and Dynamical Systems from

an Algebraic Point of View

In this section we present the symbolic dynamics representation of both probabilistic

random walks (see Section 2.1). The symbolic dynamics representation can be done

analogously for dynamical systems and many of the results here hold, although we

will not dwell on this point.

The symbolic dynamics (also known as the code space or path space) representa-

tion for a stochastic process is a DS which encodes the possible paths that a random

walker can take as the points in the space. We will see that the joint pmfs for a

discrete stochastic process are encapsulated as the joint probabilities associated to

the symbolic dynamics.

Let (Ω,Σ, µ) be a probability space, (E, E) a (not necessarily discrete) measurable

space and X = (Xn)∞n=1 an (Ω, E) stochastic process. Consider the measurable space

(E∗, E∗), where E∗ := EN and E∗ := σ(∪∞n=1En) be the σ-algebra generated by ∪∞n=1En.

For all n ∈ N, collection of integer times 1 ≤ t1 < t2 < · · · < tn and A1, . . . , An ∈ E ,

we define the cylinder set

C
(
A1 ··· An
t1 ··· tn

)
:= {x = (xi)i∈N ∈ E∗ : xtk ∈ Ak for k ∈ {1, . . . , n}}.

For C ∈ Par(E), we say C
(
A1 ··· An
t1 ··· tn

)
is a C-cylinder set if A1, . . . , An ∈ C. Also, we

define the partition, Ĉ ∈ Par(E∗), by

Ĉ := {C ( A1 )}A∈C

13
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and the set

P̂ar(E) := {Ĉ : C ∈ Par(E)} ⊂ Par(E∗).

Notice that the collection of all cylinder sets in E∗ is a π-system which generates

the σ-algebra E∗. Therefore, any measure on (E∗, E∗) is uniquely defined by its values

on the cylinder sets. We define the process-dependent measure, µX, on the cylinder

sets by

µX(C
(
A1 ··· An
t1 ··· tn

)
) = µ(∩nk=1(Xtk ∈ Ak)), (2.10)

for all n ∈ N, 1 ≤ t1 < · · · < tn, and A1, . . . , An ∈ E . We interpret µX(C
(
A1 ··· An
t1 ··· tn

)
)

as the probability that a random walker, governed by the stochastic process X, is in

the set A1 at time t1 and takes the path A1 → A2 → · · · → An at times t1, . . . , tn.

Notice that this interpretation is similar to that of the joint pmf for discrete stochastic

processes, with the only difference being that the walker’s path is through sets here,

as opposed to singletons before.

Remark 2.3.1. Fix an (Ω, E) stochastic process X, A1, . . . , An ∈ E, integer times

1 ≤ t1 < · · · < tn and t ∈ N\{t1, . . . , tn} such that ti < t < ti+1 for some 1 ≤ i < n.

Then, since µ(∩nk=1(Xtk ∈ Ak)) = µ(∩nk=1(Xtk ∈ Ak) ∩ (Xt ∈ E)), we have that

µX(C
(
A1 ··· An
t1 ··· tn

)
) = µX(C

(
A1 ··· Ai E Ai+1 ··· An
t1 ··· ti t ti+1 ··· tn

)
).

Similarly, if 1 ≤ t < t1 or t > tn. Therefore the measure µX is well defined.

We define the shift map

s : E∗ → E∗ by s(x) = y where yi = xi+1, (2.11)

for each i ∈ N, and refer to the quadruple, (E∗, E∗, µX, s), as the symbolic dynamics

of X. Notice that (E∗, E∗, µX, s) is a DS.

Of particular interest is the joint probabilities of (E∗, E∗, µX, s) with respect to

the partitions in P̂ar(E). For each C ∈ Par(E), define the (Ω, C) stochastic process

14



www.manaraa.com

XC = (XCn)∞n=0 where, for each n ∈ N, XCn is equal to Xs−n(C) defined just before

Equation (2.6). More explicitly, we can see that, for each n ∈ N, XCn = iC ◦Xn, where

iC : E → C is the natural map that assigns to each e ∈ E the unique C ∈ C such that

e ∈ C. Moreover, whenever E is a discrete space and A is the atomic partition of E,

the values of XA are singletons and it is clear that X can be identified with XA.

The following proposition shows that the joint probabilities of (E∗,Σ∗, µX, s) with

respect to Ĉ are equal to the joint pmfs of XC.

Proposition 2.3.2. Let (Ω,Σ, µ) be a probability space, (E, E) a measurable space,

X an (Ω, E) stochastic process and (E∗,Σ∗, µX, s) the symbolic dynamics of X. Then

for each C ∈ Par(E),

µ(s,Ĉ)
n (C1, . . . , Cn) = pXC(C1, . . . , Cn), for each n ∈ N and C1, . . . , Cn ∈ C.

Moreover, whenever E is a discrete space,

µ(s,Ĉ)
n (x1, . . . , xn) = pX(x1, . . . , xn), for each n ∈ N and x1, . . . , xn ∈ E,

where A is the atomic partition of E and the xi’s are the singleton sets {xi}, for each

i.

Proof. This is an immediate consequence of Equation (2.7) using the notation intro-

duced in Equation (2.9). The moreover statement is just a special case due to the

facts that, whenever E is a discrete space, the atomic partition A is in Par(E) and

X can be identified with XA.

A good resource for symbolic dynamics of Markov processes is [31].

Remark 2.3.3. Let (Ω,Σ, µ, f) be a dynamical system and C ∈ Par(Ω) a partition.

We have already seen in Equation (2.6) that we can associate random variables to

the course-grained measurements associated to a particular partition. Moreover, by

extending Equation (2.7) to account for any finite joins of the form ∨n−1
k=0f

−k(C), it is
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easy to see that the joint probabilities of (Ω,Σ, µ, f) with respect to C are exactly equal

to the joint pmfs of the associated stochastic process (defined analogously to above).

In this case, we denote the measure on the symbolic dynamics DS (Ω∗,Σ∗, s, Ĉ) with

respect to a partition C by µ̂.

2.4 Dynamical Systems from the Algebraic Point of View

Let (Ω,Σ, µ, f) be a DS and consider the collection of all uniformly bounded functions

on Ω, L∞(Ω). Let Tf : L∞(Ω)→ L∞(Ω) be the Koopman operator given by

Tf (g) = f ◦ g for all g ∈ L∞(Ω). (2.12)

It is well known that Tf satisfies the following properties (see e.g. [11]):

(i) Tf is a ∗-automorphism

(ii) ‖Tf‖ = 1

In further establish connections with random walks on a measurable space (Ω,Σ),

we say that a mapping ν : Ω× Σ→ [0, 1] to be a Markov kernel if

(i) x 7→ ν(x,A) is measurable for every A ∈ Σ, and

(ii) A 7→ ν(x,A) is a probability measure for all x ∈ Ω.

Whenever (Ω,Σ) is discrete, ν is determined by the transition matrix P with entries

P (j, i) = ν(i, {j}), for all i, j ∈ Ω.

A Markov kernel acts on L∞(Ω) in the following way

ν ◦ f(x) :=
∫

Ω
f(y)ν(x, dy). (2.13)

Furthermore, any linear operator T that acts on L∞(Ω) of the form

Tf(x) =
∫

Ω
f(y)ν(x, dy), (2.14)
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for some Markov kernel ν, is called a Markov operator. In a dual manner, we can

consider ν acting on the probability measures on (Ω,Σ) (see also Example 3.2.3).

Given any probability measure P on (Ω,Σ), the measure P ◦ ν given by

P ◦ ν(A) :=
∫

Ω
ν(x,A)P(dx) (2.15)

is also a probability measure.

Remark 2.4.1. In a similar manner to above, we can also associate to any probability

measure, P, on (Ω,Σ) a linear functional P : L∞(Ω) → R given by P(g) =
∫

Ω gdP

for all g ∈ L∞(Ω). This is a slight abuse of notation, but the context should make it

clear whenever P is being used as a probability measure or a linear functional. (See

Example 3.2.3.)

A key idea which is useful when considering a type of symbolic dynamics for DSs

in the quantum regime (see Sections 4.3), specifically with open system dynamics,

is what happens when we consider a DS acting on a product space. To this end,

let (Ωs,Σs) and (Ωe,Σe) be measurable spaces, where the subscripts s and e are to

remind us that Ωs is the system of interest and Ωe is the environment, and let f

be a map from Ωs × Ωe to itself with associated Koopman operator Tf . To each

g ∈ L∞(Ωs) set g ⊗ 1 ∈ L∞(Ωs × Ωe) be given by

g ⊗ 1(x, y) = g(x), for all (x, y) ∈ Ωs × Ωe.

Given a probability measure µ on (Ωe,Σe), we define the mapping Ts : L∞(Ωs) →

L∞(Ωs) to be given by

Ts(g)(x) :=
∫

Ωe
Tf (g ⊗ 1)(x, y)dµ(y) =

∫
Ωe

(g ⊗ 1)f(x, y)dµ(y). (2.16)

We can think of the map Ts as describing a single component of the dynamics of Tf

(or f); i.e. when we only have access to Ωs. It turns out that Ts is indeed a Markov

operator (see [11, Theorem 2.2]) and hence we can treat the dynamics on Ωs exactly
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as we would without an interaction with an environment. On the other hand, it is

possible for Ts to be probabilistic in nature even when Tf is deterministic. This idea

emphasizes the loss of information to an environment. It is also worth noting it is

not true in general that, for any n ∈ N, (T nf )s, given by Equation (2.16) for the nth

iterate of Tf , is not necessarily equal to T ns (see [11, Section 2.3]). When extending

DSs to the quantum regime, we will revisit the idea here of having access to only one

component of a coupled system.

Let us turn back now to the DS (Ω,Σ, µ, f) and let Tf be the associated Koopman

operator. To each partition C ∈ Par(Ω) we can associate a partition of unity in

L∞(Ω) given by the collection of characteristic functions γ = {1C}C∈C. Partitions of

unity will be defined in a greater generality in Section 3.2 where they will be used as

the most basic class of measurements for quantum systems. To the DS (Ω,Σ, µ, f), we

associate the triple (L∞(Ω), µ, Tf ). This triple is the simplest example of a quantum

dynamical system which will be defined in Section 4.2. In that section and the ones

succeeding it we will give many different generalizations with similar probabilistic

interpretations for the system (L∞(Ω), µ, Tf ), while also utilizing our intuition from

the coupled classical system above.
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Chapter 3

Measurements

Here we recall the formalism of measurements, developed by Edwards [23] and Davies

and Lewis [21, 20]. We follow mainly the notations of Davies and Lewis. We define

phase space, state space, observables and instruments. This formalism is general

enough that it holds valid for classical mechanics, Hilbert space quantum mechanics,

and C∗-algebra quantum mechanics.

3.1 State Space and Phase Space

A state space is defined as a pair (X,K), where

(i) X is a real Banach space with norm ‖ · ‖,

(ii) K is a closed cone in X,

(iii) if u, v ∈ K, then ‖u‖+ ‖v‖ = ‖u+ v‖, and

(iv) if u ∈ X and ε > 0, then there exists u1, u2 ∈ K such that u = u1 − u2 and

‖u1‖+ ‖u2‖ < ‖u‖+ ε.

It can be shown that, for any state space (X,K), there exists a unique positive

linear functional τ : X → R such that τ(u) ≤ ‖u‖, for u ∈ X, with equality when

u ∈ K. We say that u ∈ K is a state if τ(u) = 1. It should be remarked that all

examples of state spaces presented here will satisfy a strengthening of (iv); namely,

(iv′) if u ∈ X, then there exists u1, u2 ∈ K such that u = u1− u2 and ‖u1‖+ ‖u2‖ =

‖u‖.
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The following examples of state spaces appear most frequently in the literature.
(A) Classical Mechanics - Let Ω be a locally compact Hausdorff space and

B be the Borel σ-algebra of Ω. Take X to be the real Banach space of all

countably additive, regular, real-valued Borel measures on X and take the

norm on X to be the total variation norm and the closed cone, K, to be the

set of non-negative measures in X. It is clear that (X,K) satisfies conditions

(i)-(iii) and (iv′) of a state space by taking u1 and u2 to be the positive and

negative parts, respectively, of u ∈ X given by the Hahn decomposition.

Furthermore, the linear functional τ is given by τ(ν) =
∫

Ω dν = ν(Ω) for any

ν ∈ X.

(B) Hilbert Space Quantum Mechanics - Let H be a Hilbert space. Take

X = Ssa1 (H) to be the real Banach space of self-adjoint, trace class operators

on H equipped with the trace class norm and the closed cone, K = S+
1 (H),

to be collection of all the positive, trace class operators on H. It is clear that

the state space (X,K) satisfies conditions (i)-(iii) and (iv′) of a state space

by taking u1 and u2 to be the positive and negative parts, respectively, of

u ∈ X given by the functional calculus. Furthermore, the linear functional

τ is given by the trace, tr.

(C) C∗-Algebra Quantum Mechanics - Let A be a C∗-algebra. Let X be

the real Banach space of all bounded, self-adjoint linear functionals on A

with the dual space norm. Set the positive cone K = {ω ∈ X : ω(a∗a) ≥

0 for all a ∈ A}. It is clear that the state space (X,K) satisfies conditions

(i)-(iv) of a state space. Also, the linear functional τ is given by τ(·) = ‖ · ‖.
It is worth noting that both the classical and Hilbert space mechanics are a special

case of the C∗-algebra quantum mechanics if A is taken to be the algebra of all

continuous functions on Ω vanishing at infinity (also see Section 2.4), or if A is taken

to be the algebra of all compact operators on H, respectively.

A phase space is defined as an arbitrary measurable space (Ω,Σ), where Ω
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represents the collection of possible outcomes of a measurement and is sometimes

called the value space in the literature.

Remark 3.1.1. Throughout this manuscript we try to avoid complicating things with

the GNS construction when considering C∗-algebra mechanics whenever possible. In-

stead we will often assume that the C∗-algebra A is a subset of B(H) for some Hilbert

space H, where B(H) is the bounded operators on H. Whenever this is the case, it

will be convenient to consider only the states and general state space elements from

the pre-dual of A, A∗, which is known to be a subset of S1(H) by the trace duality.

3.2 Observables and Instruments

We say that x : Σ → X∗ is an observable if, for every E ∈ Σ, 0 ≤ x(E) ≤ τ and

x(Ω) = τ , where the partial ordering onX∗ is defined by φ ≤ ψ whenever φ(u) ≤ ψ(u)

for all u ∈ K. Given a state u ∈ K, an observable x, and E ∈ Σ, we interpret x(E)u

as the probability that a system in state u takes values in E when observed with the

observable x.

An operation is a positive, bounded linear operator T : X → X, such that

0 ≤ τ(Tu) ≤ τ(u) for every u ∈ K. We denote by O := O(X) the set of all

operations on X. Finally, we define an instrument as a map T : Σ→ O such that

τ(T (Ω)u) = τ(u), for all u ∈ K, and T (∪nEn) = ∑
n T (En), for any disjoint sequence

of sets {En} ⊆ Σ, where convergence of the sum is in the strong operator topology.

Notice that for any instrument T , one can define a unique observable xT by

setting xT (E)u = τ(T (E)u) for u ∈ X and E ∈ Σ. However, it is possible that

two distinct instruments, T 6= S, give rise to the same observable, xT = xS . From

the above correspondence, given an initial state u ∈ K and E ∈ Σ, we can interpret

T (E)u/xT (E)u ∈ K as the state of the system immediately after measuring the

system in state u with the instrument T and obtaining values in the set E.
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Next, we give the definitions of partitions and operational partitions of unity that

are generally used in C∗-algebra quantum mechanics before introducing their typical

use and formulation as instruments for each of the Examples (A) and (B) above.

This is possible since each of Examples (A) and (B) are a special case of C∗-algebra

quantum mechanics given in Example (C).

Example 3.2.1 (C∗-Algebra Quantum Mechanics). Let A be a C∗-algebra with iden-

tity 1 and let (X,K) and τ be as in Example (C) above. A (finite) operational

partition of unity is a collection γ = (γk)nk=1 ⊆ A, for some n ∈ N, such that
n∑
k=1

γ∗kγk = 1.

Given any operational partition of unity γ of size n and any subset E of {1, . . . , n} it is

clear that the linear operator, T γE acting on the bounded, self-adjoint linear functionals

on A, given by

T γE(·) :=
∑
k∈E

γ∗k · γk (3.1)

is indeed an operation. We define an instrument Tγ : P({1, . . . , n}) → O by setting

Tγ(E) = T γE for each E ∈ P({1, . . . , }). We will say Tγ is governed by γ and will

simply write T whenever the operational partition of unity is clear. Of particular

interest are the operational partitions of unity γ = (γk)nk=1 such that γ∗k = γk for each

k and γkγi = δk,iγk for each k, i. Operational partitions of unity of this form will be

simply referred to as partitions of unity.

Remark 3.2.2. One has to take particular care when defining the operations T γE in

Equation (3.1) due to the different pictures (Schrödinger or Heisenberg) that are often

employed when considering quantum mechanics. This point will be discussed further

Example 3.2.4 below.

We are now ready revisit our examples of state spaces and introduce typical in-

struments that will be applied to them along with their corresponding observables.

First, we consider Example (A) and define the sharp measurement instruments.
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Example 3.2.3 (Classical Mechanics). Let Ω, B and (X,K) be as in Example (A)

above and let the measurable space (Ω,B) be the phase space. We define the (classical)

sharp measurement instrument T by

T (E)ν(A) = ν(A ∩ E) for ν ∈ X and A,E ∈ B. (3.2)

The corresponding observable is given by

xT (E)ν = τ(T (E)ν) = ν(E) for E ∈ B and ν ∈ X.

Let (Ω,B) and (X,K) be as in Example 3.2.3 and let A = c0(Ω) be the algebra

of all continuous functions on Ω vanishing at infinity. Consider a partition of unity

γ = (γk). By definition it is clear γ can be identified with partition C = (Ck) ∈ Par(Ω),

exactly as in Section 2.4, through the identification γk = 1Ck for each k. Since

c0(Ω) is commutative, T γE in Equation (3.1) simplifies to T γE(·) = ∑
k∈E 1Ck · for each

E ∈ P({1, . . . , k}). The instrument Tγ can then be thought of as a course mea-

surement instrument, as opposed to the sharp measurement instrument considered in

Example 3.2.3. The key difference between course and sharp measurement is that for

the course measurement only a predetermined collection of measurement outcomes

is possible (corresponding the the partition C), whereas for sharp measurements any

outcome is possible.

The next example illustrates measurements in the Hilbert space formalism of

quantum mechanics with discrete phase space determined by an operational partition

of unity. This formalism will be used in our analysis of quantum random walks in

Section 4.1 and Słomczyński-Życzkowski dynamical entropy in Section 6.

Example 3.2.4 (Hilbert Space Quantum Mechanics). Let H, (X,K) and τ be as in

Example (B) and let γ = (γk)nk=1 be an operational partition of unity. Let (Ω,P(Ω))

be a discrete phase space of size n. Here, we are in the Schrödinger picture of quantum
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mechanics and we define the instrument T = Tγ by

T (E)ρ =
∑
i∈E

BiρB
∗
i for each ρ ∈ X and E ∈ P(Ω),

where the sums are taken with respect to the strong operator topology if Ω is countably

infinite. In this case, T is really the dual (or pre-dual depending on context) of the

instrument defined via the operations in Equation (3.1) and will generally be applied

to density matrices on H. Moreover, when restricted to actions on K, T represents

a positive operator valued measure. The corresponding observable is given by

xT (E)ρ =
∑
i∈E

tr(BiρB
∗
i ) for each ρ ∈ X and E ∈ P(Ω).

Whenever γ is a partition of unity in Example 3.2.4; i.e. the family of γk’s are

pairwise orthogonal projections, we will often denote them by (Pk)nk=1 and note that∑n
k=1 P

∗
kPk = ∑n

k=1 Pk = 1. In this case, the corresponding instrument T , governed

by γ, is called a Lüders-von Neumann instrument and is given by

T (E)ρ =
∑
k∈E

PkρPk for ρ ∈ X and E ∈ P(Ω),

where the sums are taken with respect to the strong operator topology if Ω is count-

ably infinite. It is worth noting that T is defined by the “collapse of wave function

formula." The corresponding observable is defined analogously.

Whenever the partition of unity (Pk)nk=1 consists of orthogonal, rank-1 projections,

the Lüders-von Neumann instrument T is called a coherent states instrument (see

[59, Section IV].) In this paper whenever we refer to a coherent states instrument

we will always mean a Lüders-von Neumann instrument given by a family of or-

thogonal, rank-1 projections as opposed to the more general definition given in [59,

Example (M)].
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Chapter 4

Non-Commutative Random Walks

In this chapter we recall three different descriptions of discrete-time dynamics in the

quantum (or non-commutative) setting. We motivate each description by relating to

its classical counterpart and discuss some connections between the different descrip-

tions.

4.1 Quantum Random Walks

Quantum random walks (QRWs) are a generalization of classical random walks to

quantum mechanics, the properties of which are significantly different from their clas-

sical courterparts (see e.g. [8]). QRWs come in two flavors: unitary QRWs (UQRWs),

introduced by Aharonov et al. in [5] and independently by Meyer in [43], used to

describe closed system dynamics, and open QRWs (OQRWs), introduced by Attal et

al. in [12], for open system dynamics. As the name suggests, UQRWs evolve via uni-

tary transformation, whereas OQRWs evolve via completely positive trace preserving

maps (quantum channels). The study of QRWs has enjoyed much interest in recent

years [7, 29, 30, 34, 48, 63], and applications have been found in many areas including

quantum computing [35, 37], the study brain networks [41], and biology [50, 51].

Both unitary and open QRWs are defined, using Hilbert Space Quantum Mechan-

ics (see Example 3.2.4), on the tensored Hilbert space H = HC ⊗ HP , where the

coined Hilbert space, HC , is meant to represent the internal degrees of freedom and

the position Hilbert space, HP , is meant to represent the position of a random walker.

The position Hilbert Space HP is a separable Hilbert space with some orthonormal
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basis labeled by a finite or countably infinite vertex set V . For this reason, it is

convenient to keep in mind the probabilistic/graph-theoretic random walk model, as

a classical comparison, in this section.

4.1.1 Unitary quantum random walks

The unitary quantum random walk (UQRW) is one of the many adaptations of the

classical random walk to the quantum domain and, in particular, is an adaptation of

classical random walks for closed quantum systems; i.e. systems that do not interact

with an environment. Similar to the probabilistic and graph-theoretic random walk

perspective (Section 2.1), we define the UQRW on a finite or countably infinite vertex

set V .

To consider a collection of vertices in the quantum domain, Hilbert space quantum

mechanics is used (see Example 3.2.4) and we consider the position space, HP :=

`2(V ), with an orthonormal basis, {|v〉}v∈V , indexed by V . To add internal degrees of

freedom to the vertices, the coin space HC is used, which is an at most countably-

dimensional Hilbert space. In general, a UQRW is given by the unitary transformation

over the tensored Hilbert space H = HC ⊗ HP . The most common UQRWs are

the so-call coined UQRWs. To define these we must first fix an orthonormal basis,

{|c, v〉}(c,v)∈C×V on H, sometimes referred to as the computational basis, for some

index set C, where |c, v〉 = |c〉 ⊗ |v〉. We say that a UQRW is coined if it is the

unitary transformation of an operator U of the form

U = S(
∑
v∈V

Uv ⊗ |v〉〈v|), (4.1)

where Uv is a unitary operator on HC for each v ∈ V , and S is a permutation operator

which is referred to as the shift operator. By a “permutation operator", we mean

that S has the form

S =
∑

(c,v)∈C×V
|σ(c, v)〉〈c, v|, (4.2)
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for some permutation σ of C × V . For each v ∈ V , the unitary operator Uv, referred

to as the coin operator at v, changes the coin state at the vertex v in a deterministic

way while the shift operator S moves the random walker from one site to another. In

the sequel we will only consider coined UQRWs and we will drop the adjective. We

say that a UQRW is space homogeneous if there exists a unitary operator W on

HC such that W = Uv for every v ∈ V . For a space homogeneous UQRW the form

of U in Equation (4.1) simplifies to

U = S(W ⊗ 1HP ).

We say that a shift operator S is coin-preserving if, for each c ∈ C, there exists

a permutation σc of V such that

S =
∑

(c,v)∈C×V
|c, σc(v)〉〈c, v|.

Furthermore, we say that a UQRW is coin-preserving if its shift operator is coin-

preserving. Notice that a coin-preserving shift operator moves the random walker

from site to site without affecting the internal state of the walker.

Let U be a unitary operator of the form Equation (4.1) with shift operator, S,

given by Equation (4.2). To draw a connection to classical random walks it is helpful

to visualize a random walker on the directed graph G = (V,E) where E is the edge

set determined by the shift operator S. That is to say, for all u, v ∈ V , (u, v) ∈ E

if and only if there exists c1, c2 ∈ C such that σ(c1, u) = (c2, v), where σ is the map

appearing in Equation (4.2), or, equivalently, PvSPu 6= 0, where Pv = 1HC ⊗ |v〉〈v|;

i.e. Pv is the projection from H to HC ⊗ span(v).

We are specifically interested in the Hadamard walk, which has been studied

extensively in the literature (e.g. [8, 29, 48]) and is defined below. Consider the

vertex set V = {0, . . . , N − 1}, for some N ∈ N with N ≥ 2, and set HP = CN .

Let HC = C2, with orthonormal basis {|R〉, |L〉}. Define the (coin-preserving) integer
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shift operator by

S =
N−1∑
n=0
|R, n+ 1〉〈R, n|+ |L, n− 1〉〈L, n|,

where addition on the integers is done modulo N . Throughout the rest of this section

addition (on V ) will be done modulo N . Notice that |R〉 now corresponds to a shift

right on the integers and |L〉 corresponds to a shift left on the integers. In this case

the directed graph G = (V,E) has edge set which is given by E = {(n, n+ 1), (n, n−

1)}N−1
n=0 . The unitary operator

h := 1√
2

1 1

1 −1

 ,
on HC is referred to as the Hadamard matrix (or Hadamard coin/gate). The Hada-

mard walk on V is the map Θ : X → X, where (X,K) is the state space defined

in Example 3.2.4, given by

Θ(ρ) = UρU∗, for each ρ ∈ X, where U = S(h⊗ 1HP ). (4.3)

It is clear that the Hadamard walk is coin-preserving and space homogeneous.

Remark 4.1.1. The Hadamard walk can easily be extended to V = Z as opposed to

the finite cycle V = {0, . . . , N − 1} and it is often viewed in this manner. (e.g. [48,

Section 5.1])

4.1.2 Open quantum random walks

In this subsection we recall the definitions of open quantum random walks (OQRWs)

introduced by Attal, et. al in [12].

Again, we begin with the tensored Hilbert space H = HC ⊗HP , where the coined

Hilbert space, HC = Cd, is meant to represent the, d ∈ N, internal degrees of freedom

(or chirality) for a walker and the position Hilbert space, HP = CV (or more generally

`2(V ) if V is countably infinite), is meant to represent the position of a random walker
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on an at most countable vertex set V . We will retain all notations from the previous

subsection.

A completely positive, trace-preserving (CP-TP) map (or quantum channel)M :

S1(H)→ S1(H), where S1(H) is the trace-class operators on H, is an open quantum

random walk if it has the following Kraus decomposition:

M(ρ) :=
∑
i,j∈V

Mi,jρM
∗
i,j, for all ρ ∈ S1(H), (4.4)

where Mi,j = Bi,j ⊗ |i〉〈j| for some Bi,j ∈ B(HC) for each i, j ∈ V . The operator

Bi,j is meant to describe the change in the coin-state degrees of freedom when the

random walker moves from site j to site i.

It is clear that an OQRW, given by Equation (4.4), must satisfy

∑
i,j∈V

M∗
i,jMi,j = 1H , (4.5)

or equivalently ∑
i∈V

B∗i,jBi,j = 1HC , for each j ∈ V. (4.6)

Note that for any OQRWM and state ρ ∈ S1(H) the output state is of the form

M(ρ) =
∑
i∈V

ρi ⊗ |i〉〈i|, (4.7)

where ρi ∈ S1(HC) for each i ∈ V .

4.1.3 A connections between open and unitary quantum random walks

In their seminal paper on OQRWs ([12]), the authors show that unitary and open

QRWs differ only by a single step in their realization procedure. Namely, the step that

requires decoherence and hence simulation of interaction with an environment. If we

recall that measurements can be thought of as an interaction with an environment, we

find a special case of OQRWs as UQRWs with measurement, as you will see. In what

follows, we consider only space-homogeneous, coin-preserving UQRWs for simplicity,

but the result extends easily to general coined UQRWs.
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Suppose Θ is a space-homogeneous, coin-preserving UQRW governed by a unitary

operator U = S(W ⊗ 1HP ), let γ = (Pv)v∈V , where the projections defining T are

given by

Pv = 1HC ⊗ |v〉〈v|, for each v ∈ V,

and let T = be the corresponding Lüders - von Neumann instrument governed by γ.

Consider the shift operator’s decomposition

S =
∑

(c,v)∈C×V
|c, σc(v)〉〈c, v|

for some permutations σc of V . For each c ∈ C, let Bc be the matrix whose cth row

is equal to the cth row of W and has every other entry equal to 0. Now, for each

u, v ∈ V , set Bu,v = ∑
c∈C

σc(v)=u
Bc.

Then, for each v ∈ V , notice that

∑
u∈V

B∗u,vBu,v =
∑
c∈C

B∗cBc = 1HC ,

by the definition of the Bc’s since W is unitary. Thus,

M(·) =
∑
u,v∈V

(Bu,v ⊗ |u〉〈v|) · (B∗u,v ⊗ |v〉〈u|) (4.8)

is an OQRW. Moreover, given any ρ =∈ S1(H) of the form Equation (4.7), which

will be its form after one application ofM, we have

T ◦Θ(ρ) = T (S(
∑
v∈V

WρvW
∗ ⊗ |v〉〈v|)S∗)

= T (
∑
c,d∈C

∑
v∈V

BcρvB
∗
d ⊗ |σc(v)〉〈σd(v)|) =M(ρ).

Thus,M = T ◦Θ defines a special case of OQRWs.

4.2 Quantum Dynamical Systems

Let (A,Σ(A)) be a von-Neumann algebraic system (also referred to as an algebraic

probability space in the literature) with Σ(A) the set of all normal states on the von
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Neumann algebra A. Throughout this section we will, for simplicity, ignore the GNS

construction and assume that A ⊆ B(H) for some separable Hilbert space H and

we will identify each normal state, ω ∈ Σ(A) with its density operator ρ ∈ S1(H),

the space of trace class operators on H, through the identification ω(·) = tr(ρ ·) (see

Remark 3.1.1). An algebraic probability space together with an automorphism Θ and

an initial state ρ ∈ S1(H) will be denoted by the triple (A,Θ, ρ) and referred to as a

quantum dynamical system (QDS). We will be mainly interested in stationary

quantum dynamical systems; i.e. ω ◦ Θ = ω or equivalently Θ∗(ρ) = ρ, where Θ∗ is

the dual of Θ.

Fix a QDS (A,Θ, ρ). Similar to classical dynamical systems in Section 2.2 we wish

to define joint probabilities associated to course-grained measurements determined

by a fixed partition. Two key differences in QDSs are that, instead of pmfs (as in

the classical case), probabilities in quantum mechanics are determined by density

operators and we are allowed more general partitions; i.e. operational partitions of

unity given in Example 3.2.1. To each operational partition of unity γ = (γk)dk=1 of

A we define the associated density operator ρ[γ] ∈Md having (i, j)-entry

ρ[γ]i,j := ω(γ∗j γi) = tr(γiργ∗j ), for each i, j ∈ {1, . . . , d}. (4.9)

ρ[γ] can be thought of as the density matrix describing the initial state ρ with the

measurement determined by γ.

To describe the joint probabilities associated to the QDS (A,Θ, ρ) with respect

to γ, we alternate evolving with Θ and measuring with γ and arrive at a density

operator ρ(n)[γ] ∈M⊗n
d = Mdn whose (̄i, j̄)-entry is given by

ρ(n)[γ ]̄i,j̄ = ω(γ∗j1Θ(· · ·Θ(γ∗jnγin) · · · )γi1)

= tr(γinΘ∗(· · ·Θ∗(γi1ργ∗j1) · · · )γ∗jn), (4.10)

for each n ∈ N, where ī = (i1, . . . , in) and j̄ = (j1, . . . , jn). We will refer to density

matrices ρ(n)[γ] ∈ M⊗n
d as the joint densities of (A,Θ, ρ) with respect to γ.
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See also [38, Equation 3.20].

Next we define the join of operational partitions of unity in order to describe the

correlated probabilities of the QDS across time. Given any two operational partitions

of unity γ = (γk)dk=1 and λ = (λl)ml=1, we define the join of γ and λ to be the

operational partition of unity

γ ◦ λ = {γkλl : k ∈ {1, . . . , d} and l ∈ {1, . . . ,m}}. (4.11)

Note that, due to the non-commutativity of A, the join of operational partitions

of unity is not commutative; i.e. γ ◦ λ 6= λ ◦ γ. The join of any finite number of

operational partitions of unity can be defined using Equation (4.11) recursively.

Given any stationary QDS (A,Θ, ρ), operational partition of unity γ = (γk)dk=1

and integer time n ∈ N, let Θn(γ) = (Θn(γk))k and consider the density operator

ρ[Θn−1(γ) ◦ · · · ◦ Θ(γ) ◦ γ]. If Θ is a ∗-automorphism; i.e. Θ(a∗) = Θ(a)∗ for each

a ∈ A and Θ(ab) = Θ(a)Θ(b) for each a, b ∈ A, then Equation (4.10) simplifies to

ρ(n)[γ ]̄i,j̄ = ω(γ∗j1Θ(γj2)∗ · · ·Θn−1(γjn)∗Θn−1(γin) · · ·Θ(γi2)γi1)

= tr(γinΘ∗(γin−1) · · ·Θn−1∗(γi1)ρΘn−1∗(γ∗j1) · · ·Θ∗(γjn−1)∗γ∗jn), (4.12)

for each n ∈ N and ī, j̄ ∈ {1, . . . , d}n, where the last equality holds since ρ is invariant

with respect to Θ∗. Therefore, in this case,

ρ(n)[γ] = ρ[Θn−1(γ) ◦ · · · ◦Θ(γ) ◦ γ] for each n ∈ N. (4.13)

We finish off this section by showing that for any classical DS (Ω,Σ, f, µ), the asso-

ciated (commutative) QDS on L∞(Ω) with dynamics given by the Koopman operator

(see Section 2.4) has probabilities that are exactly equal to the joint probabilities of

(Ω,Σ, µ, f). Fix a DS (Ω,Σ, f, µ) and let Tf be the associated Koopman operator

given in Equation (2.12). To each partition C ∈ Par(Ω) we can associate a partition

of unity given by the collection of characteristic functions γ = {1C}C∈C ⊆ L∞(Ω).

32



www.manaraa.com

To the DS (Ω,Σ, µ, f), we associate the QDS (L∞(Ω), Tf , µ), where µ is a state in

the sense of Example 3.2.3 which is given more explicitly in Remark 2.4.1.

Proposition 4.2.1. For any stationary DS (Ω,Σ, µ, f) and partition C = {Ci}di=1 ∈

Par(Ω), the joint probabilities, µ(f,C)
n , given in Equation (2.9) are equal to the diagonal

entries of the joint densities, µ(n)[γ], of the associated QDS (L∞(Ω), Tf , µ) given in

Equation (4.12). Moreover, the off-diagonal entries of µ(n)[γ] are equal to 0 for all

n ∈ N. Therefore

µ(n)[γ] = diag(µ(f,C)
n )

for each n ∈ N, where diag(ν) ∈ Md is the diagonal matrix with entries from ν for

any probability measure on ({1, . . . , d},P({1, . . . , d})).

Proof. Fix a DS (Ω,Σ, µ, f) and a partition C ∈ Par(Ω). Let (L∞(Ω), Tf , µ) be the

associated QDS and γ = (1C)C∈C be the corresponding partition of unity in L∞(Ω) as

described in the preceding paragraph. Note that by Property (i) given immediately

after the definition of Tf in Equation (2.12), the joint densities µ(n)[γ] are indeed

given by Equation (4.12) for each n ∈ N. Then

µ(n)[γ ]̄i,j̄ = µ(γ∗j1Tf (γj2)∗ · · ·T n−1
f (γ∗jn)T n−1

f (γin) · · ·Tf (γi2)γi1) Equation (4.12)

=
∫

Ω

n−1∏
k=0

T kf (1Cik+1
1Cjk+1

)dµ Remark 2.4.1

= δī,j̄

∫
Ω
1Ci1
· f(1Ci2 ) · · · · · fn−1(1Cin )dµ Equation (2.12)

= δī,j̄

∫
Ci1

f(1Ci2 ) · · · · · fn−1(1Cin )dµ

...

= δī,j̄

∫
∩n−1
k=0f

−k(Cik+1 )
1Ωdµ

= δī,j̄µ(∩n−1
k=0f

−k(Cik+1)) = δī,j̄µ
(f,C)
n (Ci1 , . . . , Cin), Equation (2.9)

as desired, where equality 6 holds since
∫
A f(1B)dµ =

∫
A∩f−1(B) dµ for any A,B ∈ Σ.

Therefore µ(n)[γ] = diag(µ(f,C)
n ) for each n ∈ N.
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4.3 Quantum Markov Chains

In this section we recall the definition of quantum Markov chains (QMCs). The

QMC approach to non-commutative dynamics was first introduced by Accardi in [1],

was developed further for the Accardi-Ohya-Watanabe (AOW) entropy in [3], and

can be thought of as a symbolic dynamics for QDSs which utilizes spin chains from

quantum statistical mechanics. Another QMC approach was introduced by Tuyls

in [61] for the study of the Alicki-Fannes (AF) entropy, which was introduced in

[6]. Finally, a generalization of both QMC approaches was given in [38], where the

authors introduced the Kossakowski-Ohya-Watanabe (KOW) entropy. Throughout

this section, we will follow mainly the terminology and notations of [3] and [38], but

we will follow the construction given in [61], which is most suitable for our purposes.

Fix a stationary QDS (A,Θ, ρ). We will refer to any completely positive, unital

map E : Md ⊗A → A as a transition expectation, for any d ∈ N. Let γ = (γi)di=1

be an operational partition of unity. Following [61, Page 413] (see also [38, Equation

3.14]), we will consider the transition expectation Eγ : Md ⊗ A → A given by the

equation

Eγ([ai,j]) =
d∑

i,j=1
γ∗i ai,jγj for all [ai,j] ∈Md ⊗A. (4.14)

Remark 4.3.1. In the original paper, [3], the authors only considered γ that were

partitions of unity and considered a simplified (as compared to Equation (4.14)) tran-

sition expectation given by

Eγ([ai,j]) =
d∑
i=1

γiai,iγi for all [ai,j] ∈Md ⊗A.

Notice that there is no need for a γ∗i in the above equation since γ∗i = γi, for each

i, whenever γ is a partition of unity. We will consider this transition expectation

further in Section 7.2.

To include the dynamics of the QDS, we will also make use of the transition
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expectation

Eγ,Θ = Θ ◦ Eγ. (4.15)

A quantum Markov chain (QMC) is a pair {ρ, E} where ρ is an initial state

and E is a transition expectation. We will be specifically interested in QMCs whose

transition expectation is given by Equation (4.15). Given a QMC, we define the

quantum Markov state ψ ∈ Σ(M⊗N
d ) by the equation

ψ(a1 ⊗ · · · ⊗ an) = tr(ρE(a1 ⊗ E(a2 ⊗ E(· · · E(an ⊗ 1) · · · )))), (4.16)

for all n ∈ N and a1, . . . , an ∈ Md. For notational convenience, we will often write

ψ = {ρ, E} whenever ψ is the quantum Markov state obtained from the QMC {ρ, E}

as defined in Equation (4.16).

The joint densities for ψ are given by the density matrices ρn ∈M⊗n
d satisfying

ψ(a1 ⊗ · · · ⊗ an) = tr(ρna1 ⊗ · · · ⊗ an), (4.17)

for all n ∈ N and a1, . . . , an ∈ Md. For any stationary QDS (A,Θ, ρ), operational

partition of unity γ, and associated quantum Markov chain and state {ρ, Eγ,Θ} and

ψ, respectively, the joint densities of ψ given in Equation (4.17) are equal to the

joint densities are equal to the joint densities of (A,Θ, ρ) with respect to γ given in

Equation (4.10), as we will see in Section 7.

In a similar vein to the coupled classical system in Section 2.4, we can think of the

coupled system Md ⊗A here. In this case we only have access to the measurements

with values in Md; notice that when defining the joint correlations in Equation (4.16)

we have assumed the state 1 on A. We can think of the output of the transition

expectation Eγ(a⊗1) as the most likely state of A to have produced the measurement

outcome a ∈Md with respect to the partition γ. In practice, we will usually apply the

lifting E∗γ,Θ : Σ(A)→ Σ(Md ⊗A), in the sense of [2], to the initial state ρ iteratively

to obtain the joint densities ρn. The iterative applications of the lifting E∗γ,Θ can be

35



www.manaraa.com

thought of in the Schrödinger Picture as providing, in the limit, the state ψ which

contains all the correlations of a classical stochastic process!

We will finish this section by giving the QMC representation for a classical dy-

namical system. Fix a DS (Ω,Σ, µ, f), a finite partition C ∈ Par(Ω) of size d

and let (L∞(Ω), Tf , µ) and γ be the associated QDS and partition of unity, respec-

tively. For each k ∈ {1, . . . , d}, let ek = |k〉〈k| in L∞({1, . . . , d}), where we identify

L∞({1, . . . , d}) with the diagonal matrices in Md, which we denote by diag(Md).

The transition expectation Eγ : L∞({1, . . . , d})⊗L∞(Ω)→ L∞(Ω) for γ, given in

Equation (4.14), simplifies to

Eγ(
d∑

k=1
ek ⊗ fk) =

d∑
k=1

1Ck · fk for any f1, . . . , fd ∈ L∞(Ω). (4.18)

Notice that since we have identified L∞({1, . . . , d}) with diag(Md), there are no off-

diagonal entries to consider and Equation (4.18) is of the form introduced in Re-

mark 4.3.1.

The QMC representing the DS (Ω,Σ, µ, f) with respect to C is then given by

the pair {µ, Eγ} on the spin chain diag(Md)⊗N with quantum Markov state given by

Equation (4.16). Recall that, in the symbolic dynamics picture for a classical DS, we

define a measure µ̂ on Ω∗ = ⊕NΩ (see Remark 2.3.3) by

µ̂(C
(
A1 ··· An
1 ··· n

)
) = µ(∩nk=1f

−(k−1)(C)), (4.19)

for any cylinder set in Σ∗, and extend uniquely to Σ∗. Again, we will denote

µ̂(C
(
A1 ··· An
1 ··· n

)
) by µ(s,Ĉ)(A1, . . . , An) as in Equation (2.9). On the other hand, the

quantum Markov state ψ plays the role of µ(s,Ĉ) in the spin chain. Identifying each

Ak in Equation (4.19) with its representation in diag(Md); i.e. Ak = ∑
j:Cj⊆Ak ej, we

have

ψ(A1 ⊗ · · · ⊗ An) = µ(Eγ,Tf (A1 ⊗ Eγ,Tf (A2 ⊗ Eγ,Tf (· · · Eγ,Tf (An ⊗ 1) · · · )))) (4.20)

= µ(Eγ,Tf (A1 ⊗ Eγ,Tf (A2 ⊗ Eγ,Tf (· · · Eγ,Tf (An−1 ⊗ (f ◦ 1An)))))
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= µ(f ◦ 1A1 ◦ f 2 ∩ · · · ∩ fn ◦ 1An)

= µ(∩nk=1f
−k(Ak)).

Therefore, if f is µ-invariant; i.e. (Ω,Σ, µ, f) is stationary, we have that

ψ(A1 ⊗ · · · ⊗ An) = µ(s,Ĉ)(A1, . . . , An),

where µ(s,Ĉ)(A1, . . . , An) is the notation given just beneath Equation (4.19). Hence

ψ can only take values depending on the partition γ (or C), similar to what we have

seen before with classical symbolic dynamics.
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Chapter 5

Entropy in Classical Systems

Dynamical entropy in classical systems can be seen from two distinct viewpoints: The

information theoretic viewpoint (see e.g. [19]) which uses entropy rate of stochas-

tic processes and the dynamical systems viewpoint (see e.g. [22]) which uses the

Kolmogorov-Sinai (KS) dynamical entropy. We prove that the connection between

entropy rate and KS entropy is seen through the symbolic dynamics of a stochastic

process, which is a dynamical system with KS entropy equal to the entropy rate of

the original stochastic process (see Section 5.3). On the other hand, entropy rate and

KS entropy are inherently different as the former is probabilistic in nature and the

latter is deterministic (see Section 5.4).

5.1 Entropy in Dynamical Systems

Let (Ω,Σ, µ) be a probability space and Par(Ω) be the collection of all finite or

countably infinite measurable partitions of Ω as in Section 2.2. Given any partition

C ∈ Par(Ω) we define the entropy of C by

Hµ(C) :=
∑
C∈C

η(µ(C)),

where η : [0,∞) → [0,∞) is given by η(x) = −x ln x, for x > 0 and we agree that

η(0) = 0. When there is no confusion about the probability measure in question, we

will simply write H(C) instead of Hµ(C).

Remark 5.1.1 ([22, Page 23]). It is well known that η is countably subadditive; i.e.

η(∑n an) ≤ ∑
n η(an) for any nonnegative sequence {an}n. This gives that for any
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probability space (Ω,Σ, µ) and any two partitions C,D ∈ Par(Ω) satisfying D ≤ C, we

have that H(D) ≤ H(C).

Fix a probability space (Ω,Σ, µ). Recall that, for any two sets C,D ∈ Σ, condi-

tional probability of C given D is given by µ(C|D) := µ(C ∩ D)/µ(D). Given two

partitions, C,D ∈ Par(Ω), the conditional entropy of C given D is given by

H(C|D) :=
∑
D∈D

µ(D)
∑
C∈C

η(µ(C|D)) = −
∑
C∈C
D∈D

µ(C ∩D) ln(µ(C|D)). (5.1)

The so-called chain rule follows.

Theorem 5.1.2 (Chain Rule, [22, Equation 1.4.3]). Let (Ω,Σ, µ) be a probability

space and C,D ∈ Par(Ω). Then

H(C ∨ D) = H(D) +H(C|D).

More generally, given a finite collection of partitions C0, . . . , Cn ∈ Par(Ω), we have

H(∨nk=0Ck) = H(C0) +
n∑
k=1

H(Ck| ∨k−1
`=0 C`).

Also, from the definition of conditional entropy (Equation (5.1)) and the countable

subadditivity of η (Remark 5.1.1) we have, for any B, C,D ∈ Par(Ω) satisfying B ≤ D,

that

0 ≤ H(C|D) ≤ H(C|B). (5.2)

See [22, Section 1.4] for more details on conditional entropy of partitions. The fol-

lowing theorem will be used throughout this manuscript. In the proof we will use

the well known Césaro mean Theorem which states that, for any sequence of real

numbers {an}∞n=1 converging to some element, a ∈ R ∪ {∞}, the sequence {bn}∞n=1

given by bn = 1
n

∑n
k=1 ak, for each n ∈ N, also converges to a.

Theorem 5.1.3. Let (Ω,Σ, µ) be a probability space and {Cn}∞n=1 be a sequence in

Par(Ω). If limn→∞H(Cn| ∨n−1
k=1 Ck) = a, then limn→∞

1
n
H(∨nk=1Ck) = a.
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Proof. Set a1 = H(C1) and an = H(Cn| ∨n−1
k=1 Ck), for each n ∈ N with n ≥ 2. Then,

by assumption, an converges to a ∈ R ∪ {∞}. For each n ∈ N, set bn = 1
n

∑n
k=1 ak.

Then, by Theorem 5.1.2, bn = 1
n
H(∨nk=1Ck) which converges to a by the Césaro mean

Theorem.

Next we wish to define the Kolmogorov-Sinai (KS) dynamical entropy. Fix a DS

(Ω,Σ, µ, f) and a partition C ∈ Par(Ω). The Kolmogorov-Sinai (KS) entropy of

(Ω,Σ, µ, f) with respect to C is given by

hKS(f, C) = lim
n→∞

1
n
H(∨nk=1f

−(k−1)(C)), (5.3)

whenever this limit exists.

From Theorem 5.1.3, we have

hKS(f, C) = lim
n→∞

H(f−n(C)| ∨nk=1 f
−(k−1)(C)), (5.4)

whenever this limit exists.

Corollary 5.1.4. Let (Ω,Σ, µ, f) be a stationary DS and C ∈ Par(Ω). Then the limit

in Equation (5.4), and hence the limit in Equation (5.3), exists and

hKS(f, C) = lim
n→∞

H(f−n(C)| ∨nk=1 f
−(k−1)(C)).

Proof. For each n ∈ N with n ≥ 2, we have

H(f−n(C)| ∨nk=1 f
−(k−1)(C)) ≤ H(f−n(C)| ∨nk=2 f

−(k−1)(C)) by (5.2)

= H(f−(n−1)(C)| ∨n−1
k=1 f

−(k−1)(C)),

where the last equality holds since (Ω,Σ, µ, f) is stationary. Therefore H(f−n(C)|

∨nk=1f
−(k−1)(C)) is a decreasing sequence which is bounded below by zero and hence

converges. By Theorem 5.1.3,

hKS(f, C) = lim
n→∞

H(f−n(C)| ∨nk=1 f
−(k−1)(C)).
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Remark 5.1.5. As mentioned before it is common in the literature to only refer

to (Ω,Σ, µ, f) as a DS whenever µ is f -invariant. Although this convention has its

benefits, as evidenced by Corollary 5.1.4, we find it restrictive and do not adopt it

here.

Finally, the KS entropy of (Ω,Σ, µ, f) is given by

hKS(f) = sup
C∈Par(Ω)
H(C)<∞

hKS(f, C). (5.5)

Remark 5.1.6. Fix a dynamical system (Ω,Σ, µ, f). In many instances, KS entropy

is taken as the sup over only finite partitions. However, the two definitions are

equivalent (see [22, Page 102]). Furthermore, it is remarked in [22, Page 61] that the

restriction of the sup in Equation (5.5) to include only those partitions, C, satisfying

H(C) < ∞ is natural because otherwise it is possible to obtain infinite KS entropy

for the identity transformation. This is due to the fact that H(f, C) = ∞ whenever

H(C) =∞.

For a more detailed exposition on dynamical entropy and classical dynamical

systems (with invariant measures), we refer the reader to the book of Walters [64]. For

extensions of the results of Walters to include infinite partitions with finite entropy,

the reader is referred to the book of Downarowicz [22].

5.2 Entropy in Probability Theory

Next we look at entropy of random variables and stochastic processes. We will stick

to to discrete output spaces, although more general definitions are well known. Let

(Ω,Σ, µ) be a probability space, (E, E) be a discrete measurable space and X an

(Ω, E) random variable with pmf p = pX . The entropy X is given by the equation

Hµ(X) :=
∑
x∈E

η(p(x)). (5.6)
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When there is no confusion about the probability measure in question, we will simply

write H(X) instead of Hµ(X). Note that, by Equation (2.6), H(XC) = H(C) for any

partition C ∈ Par(Ω) on a probability space (Ω,Σ, µ), where XC is given just before

Equation (2.6).

Any finite collection, (Xk)nk=1, of (Ω, E) discrete random variables can also be

viewed as a discrete (Ω, En) random variable (or random vector) and the entropy of

(X1, . . . , Xn) is given by Equation (5.6) and is related to its joint pmf by the equation

H(X1, . . . , Xn) :=
∑
xk∈E

1≤k≤n

η(pX1,...,Xn(x1, . . . , xn)). (5.7)

Notice that, by Equation (2.7), for any finite collection of partitions (Ck)nk=1 in Par(Ω),

where (Ω,Σ, µ) is a probability space, we have H(XC1 , . . . , XCn) = H(∨nk=1Ck).

The conditional entropy of Xn+1 given (X1, . . . , Xn) is given by the equa-

tion

H(Xn+1|X1, . . . , Xn) :=
∑
xk∈E

1≤k≤n

p(x1, . . . , xn)
∑

xn+1∈E
η(p(xn+1|x1, . . . , xn)), (5.8)

where p(xn+1|x1, . . . , xn) is given in Equation (2.2). Notice that, by Equation (2.8),

for any finite collection of partitions (Ck)nk=1 ∈ Par(Ω) of a probability space (Ω,Σ, µ),

we have H(XCn|XC1 , . . . , XCn−1) = H(Cn| ∨n−1
k=1 Ck). See [19, Section 2.2] for more

details on conditional entropy of random variables.

Remark 5.2.1. The entropy and conditional entropy of non-discrete random vari-

ables can be defined similarly to Equations (5.6) and (5.8), respectively, by using in-

tegration and probability distribution functions instead of sums and pmfs. However,

we are mainly interested in discrete random variables here.

Next we turn to entropy rate of stochastic processes. Let (Ω,Σ, µ) be a probability

space, (E, E) be a discrete measurable space, and X = (Xn)∞n=1 be an (Ω, E) stochastic

process. Given a stochastic process of discrete random variables, the entropy of a finite
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initial subsequence is given by Equation (5.7) and the conditional entropy of the nth

term given all the previous ones is given by Equation (5.8).

The entropy rate of a stochastic process X = (Xn)∞n=1 is given by

H(X) := lim
n→∞

1
n
H(X1, . . . , Xn), (5.9)

whenever this limit exists.

Another quantity, which is often equal to the entropy rate, is given by

H ′(X) := lim
n→∞

H(Xn+1|X1, . . . , Xn), (5.10)

whenever this limit exists. The two quantities H(X) and H ′(X) correspond to two

different interpretations of entropy rate. The first is interpreted as the average entropy

of the first n random variables and the second as the entropy of the last random

variable given the past. The following result shows the relationship between H(X)

and H ′(X).

Corollary 5.2.2. Let X = (Xn)∞n=1 be a stochastic process. If the limit in Equa-

tion (5.10) exists, then the limit in Equation (5.9) also exists and H(X) = H ′(X).

Proof. By the definitions ofH(X1, . . . , Xn) andH(Xn|X1, . . . , Xn−1) in Equations (5.7)

and (5.8), respectively, (and the sentence following each of those equations) this is

simply a restatement of Theorem 5.1.3.

The following is another corollary for stationary stochastic processes which is also

proved in [19, Theorem 4.2.2].

Corollary 5.2.3. Let X be a stationary stochastic process. Then the limits in Equa-

tions (5.9) and (5.10) both exist and H(X) = H ′(X).

Proof. The proof is similar to the proof of Corollary 5.1.4. For each n ∈ N with

n ≥ 2, we have

H(Xn|X1, . . . , Xn−1) ≤ H(Xn|X1, . . . , Xn−1) by (5.2)
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= H(Xn−1|X1, . . . , Xn−2) since X is stationary.

Therefore H(Xn|X1, . . . , Xn−1) is a decreasing sequence which is bounded below by

zero and hence converges. By Equations (5.7) and (5.8), and Theorem 5.1.3, H(X) =

H ′(X).

Next we look at the entropy rate of discrete Markov processes governed by a tran-

sition matrix; i.e. the discrete Markov processes satisfying Equation (2.4). Recall the

conventions for representing transition probabilities as stochastic matrices, probabil-

ity measures on a discrete measurable space (E,P(E)) as probability vectors, and

defining their product by matrix multiplication at the end of Section 2.1. Also recall

that µ is P -invariant whenever Pµ = µ and the convention of setting the initial mea-

sure µ to be pX1 . The following theorem gives a simplification of the entropy rate for

Markov processes governed by a transition matrix.

Theorem 5.2.4. Let X be a discrete (Ω, E) Markov process governed by the transition

matrix P and set µ = pX1. Then

H(X) = lim
n→∞

∑
y∈E

(P nµ)y
∑
x∈E

η(px,y),

whenever the limit exists. Moreover, if X is stationary, then

H(X) =
∑
y∈E

µy
∑
x∈E

η(px,y).

Proof. Since X is a Markov process governed by the transition matrix P we have

H(Xn+1|X1, . . . , Xn) = H(Xn+1|Xn) =
∑
y∈E

pXn(y)
∑
x∈E

η(px,y),

for each n ∈ N, where the second equality follows from Equation (5.8). Then from

the definition of matrix multiplication, for each n ∈ N and e1, . . . , en ∈ E, we have

pXn(en) =
∑
ek∈E

1≤k≤n−1

pX1(e1)
n∏
k=2

pek,ek−1 = (P nµ)en .
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Therefore

H(X) = lim
n→∞

∑
y∈E

(P nµ)y
∑
x∈E

η(px,y),

whenever the limit exists. The moreover statement is immediate because P nµ = µ

for all n ∈ N whenever X is stationary.

Remark 5.2.5. Certain cases of Theorem 5.2.4 appear frequently in the literature, but

to the best of our knowledge we have not seen it presented in the generality of above.

For instance, it can be seen for the case where µ is P -invariant in [19, Theorem 4.2.4]

or [64, Theorem 4.26].

In the literature, given a transition matrix P on a discrete measurable space

(E,P(E)) with a unique invariant probability vector µ, it is common to set

H(P ) :=
∑
y∈E

µy
∑
x∈E

η(px,y), (5.11)

and refer to H(P ) as the entropy of P . As it is shown in Theorem 5.2.4, the entropy,

H(P ), of P is equal to the entropy rate, H(X), of any stationary Markov process, X,

governed by the transition matrix P such that pX1 = µ.

5.3 Entropy in Symbolic Dynamics: The connection between

entropy rate and KS entropy

Let (Ω,Σ, µ) be a probability space, (E, E) a (not necessarily discrete) measurable

space, X = (Xn)∞n=0 an (Ω, E) stochastic process, and (E∗, E∗, µX, s) the correspond-

ing symbolic dynamics. Recall that, for any C ∈ Par(E), we defined the partition

Ĉ ∈ Par(E∗), by

Ĉ := {C ( A1 )}A∈C

and the set

P̂ar(E) := {Ĉ : C ∈ Par(E)} ⊂ Par(E∗).
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Since (E∗, E∗, µX, s) is a DS, its partition dependent and independent KS entropies

are given by Equations (5.3) and (5.5), respectively.

Of particular interest is the KS entropy of (E∗, E∗, µX, s) with respect to the

partitions in P̂ar(E). For each C ∈ Par(E), recall the (Ω, C) stochastic process XC =

(XCn)∞n=0 defined in the paragraph preceding Proposition 2.3.2. Since the values of

XA are singletons, it is clear that X can be identified with XA whenever A is the

atomic partition of the discrete space E. The following corollary shows that the KS

entropy of (E∗,Σ∗, µX, s) with respect to Ĉ and the entropy rate of XC are equal.

Corollary 5.3.1. Let (Ω,Σ, µ) be a probability space, (E, E) a (not necessarily dis-

crete) measurable space, X an (Ω, E) stochastic process and (E∗,Σ∗, µX, s) the sym-

bolic dynamics of X. Then for each C ∈ Par(E), H(XC) = hKS(s, Ĉ). In particular,

whenever E is a discrete space, H(X) = hKS(s, Â), where A is the atomic partition

of E.

Proof. This is an immediate consequence of Proposition 2.3.2 and the definitions of

entropy introduced in the two preceding sections.

An important tool for computing the KS entropy of a DS is the Kolmogorov-Sinai

Theorem. First, given a DS (Ω,Σ, µ, f) and a partition C ∈ Par(Ω), we say that C is

a generating partition for (Ω,Σ, µ, f) if

σ(∪∞n=1 ∨nk=1 f
−(k−1)(C)) = Σ.

Notice that the definition of a generating partition does not depend on µ, but for

simplicity of notation we keep the full DS.

Theorem 5.3.2 (Kolmogorov-Sinai Theorem). Let (Ω,Σ, µ, f) be a DS and C,D ∈

Par(Ω). If σ(D) ⊆ σ(∪∞n=1 ∨nk=1 f
−(k−1)(C)), then

hKS(f, C) ≥ hKS(f,D).

In particular, if C is a generating partition and H(C) <∞ then hKS(f) = hKS(f, C).
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A proof of Theorem 5.3.2 can be found in [22, Theorem 4.2.2].

Corollary 5.3.3. Let (Ω,Σ, µ) be a probability space, (E, E) be a discrete measur-

able space, A be the atomic partition of E, X be an (Ω, E) stochastic process and

(E∗,Σ∗, µX, s) be the symbolic dynamics of X. Then H(X) = hKS(s) = hKS(s, Â)

whenever X1 has finite entropy.

Proof. Since

∨n−1
k=1s

−(k−1)(Â) = {C
(
{e1} ··· {en}

1 ··· n

)
: e1, . . . , en ∈ E},

we see that Â is a generating partition for (E∗,Σ∗, µX, s). Then Proposition 5.3.1

and Theorem 5.3.2 give that hKS(s) = hKS(s, Â) = H(X), whenever Â has finite

entropy. Noticing that H(Â) = H(XÂ) = H(X1) <∞, the result follows.

Remark 5.3.4. Notice that the results in Proposition 5.3.1 and Corollary 5.3.3 look

nearly identical except that the condition H(X1) < ∞ has been added to the latter.

This assumption is necessary due to the fact that hKS(s, Â) is defined regardless

of whether H(Â) is finite or infinite, but is only considered in the supremum of

Equation (5.5) when H(Â) is finite.

5.4 Differences between entropy rate and KS entropy

In this section we give the differences between entropy rate and KS entropy. The first

thing to notice is that dynamics of a stochastic process are probabilistic in nature,

whereas the dynamics of a DS are deterministic in nature. This fact will be exploited

to establish the differences in the two entropies in this section and again in Section 6.3

to establish differences between quantum dynamical entropy and KS entropy. The

following two propositions give properties of KS entropy whose analogous statements

do not hold true for entropy rate. The first proposition will use the well known fact

(see e.g. [22, Equation (1.3.2)]) that for any probability space (Ω,Σ, µ) and partition
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C ∈ Par(Ω), we have

H(C) ≤ ln |C| ≤ ln |Ω|. (5.12)

Proposition 5.4.1. Let (Ω,Σ, µ, f) be a DS such that |Ω| <∞. Then hKS(f) = 0.

Proof. For any partition C ∈ Par(Ω), Equation (5.12) gives that

H(∨nk=1f
−(k−1)(C)) ≤ ln |Ω|

, for each n ∈ N. Therefore hKS(f, C) = 0 for every C ∈ Par(Ω) and thus hKS(f) =

0.

Proposition 5.4.2 ([22, Fact 4.1.14]). Let (Ω,Σ, µ, f) be a DS. Then the KS entropy

of f is linear in time; i.e.

hKS(fn) = nhKS(f), for all n ∈ N.

The example of a stationary Markov process governed by the unbiased random

walk on a cycle (which is defined below) is enough to show that entropy rate does not

have the analogous properties of KS entropy given in Propositions 5.4.1 and 5.4.2. Let

V = {0, . . . , N − 1}, for some N ∈ N with N ≥ 3, let µ be the uniform distribution

on V and consider the discrete probability space (V,P(V ), µ). The unbiased random

walk on the N -cycle, V , is governed by the transition matrix P with entries pv+1,v =

pv−1,v = 1/2, where addition is done modulo N , for all v ∈ V , and pu,v = 0 if u 6= v±1.

Proposition 5.4.3. Let (V,P(V ), µ) be the discrete probability space with V =

{0, . . . , N − 1}, for some N ∈ N with N odd and N ≥ 3, µ be the uniform dis-

tribution on V and P be the transition matrix governing the unbiased random walk

on V . Then H(P ) = ln 2 and H(P 2) = 3
2 ln 2.

Proof. Clearly µ is the unique probability measure that is P -invariant. Therefore

Equation (5.11) gives that

H(P ) =
∑
v∈V

µv
∑
u∈V

η(pu,v) =
∑
v∈V

1
N

2η(1
2) = ln 2.
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Also notice that, for all v ∈ V , P 2 has entries p(2)
v±2,v = 1

4 , p
(2)
v,v = 1

2 and p(2)
u,v = 0 in

all other cases, where addition is done modulo N . Again µ is the unique probability

measure that is P 2-invariant and Equation (5.11) gives that

H(P 2) =
∑
v∈V

µv
∑
u∈V

η(p(2)
u,v) =

∑
v∈V

1
N

(2η(1
4) + η(1

2)) = 3
2 ln 2.

Proposition 5.4.3 and Corollary 5.3.3 establish that the KS entropy of the symbolic

dynamics of a stochastic process with range in a finite measurable space need not be

zero, whereas Proposition 5.4.1 states that the KS entropy of a finite DS must be 0.

Propositions 5.4.3 and 5.4.1 do not contradict Proposition 5.3.1 since the cardinality

of E∗, in the symbolic dynamics of a stochastic process, is not finite unless the range,

E, of the stochastic process is a singleton. Also, Proposition 5.4.3 says that entropy

rate is not linear in time whereas Proposition 5.4.2 says that KS entropy is linear in

time. Again these two propositions are not contradictory. We will elaborate a bit

further for clarity. In what follows, we will denote the KS entropy of a DS (Ω,Σ, µ, f)

by hKS(f, µ) instead of hKS(f) to distinguish between different measures. We will

denote the partition dependent KS entropy similarly.

Let (V,P(V ), µ) be the finite discrete probability space with V = {0, . . . , N − 1},

for some N ∈ N with N odd and N ≥ 3, µ be the uniform distribution on V , P

be the transition matrix governing the unbiased random walk on the N -cycle, V ,

X = (Xn)∞n=0 be any stationary Markov process governed by the transition matrix

P , AV the atomic partition of V and (V ∗,P(V )∗, µX, s1) be the symbolic dynam-

ics of X, where s1 denotes the shift map on V ∗. Since ÂV is a generating par-

tition for (V ∗,P(V )∗, µX, s1), Corollary 5.3.3 shows that H(X) = hKS(s1, µ
X) =

hKS(s1, µ
X, ÂV ). Since ÂV ∨s−1

1 (ÂV ) is a generating partition for (V ∗,P(V )∗, µX, s2
1)

with finite entropy, the KS Theorem gives that hKS(s2
1, µ

X) = hKS(s2
1, µ

X, ÂV ∨

s−1
1 (ÂV )). Next, consider the stationary Markov process Y = ((X2n−1, X2n))∞n=1 and
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let ((V × V )∗,P(V × V )∗, µY, s2) be the symbolic dynamics of Y and AV×V be the

atomic partition of V × V , where s2 denotes the shift map on (V × V )∗. Since
ˆAV×V is a generating partition for ((V × V )∗,P(V × V )∗, µY, s2) with finite entropy,

Corollary 5.3.3 gives that H(Y) = hKS(s2, µ
Y) = hKS(s2, µ

Y, ˆAV×V ). Notice that

µY(C
(

(e1,e2) ··· (e2n−1,e2n)
1 ··· n

)
) = µX(C ( e1 ··· e2n1 ··· 2n )),

for all e1, . . . , e2n ∈ E and n ∈ N. Thus

HµY(∨nk=1s
−(k−1)
2 ( ˆAV×V ))) = HµX(∨nk=1(s2

1)−(k−1)(ÂV ∨ s−1
1 (ÂV )),

for all n ∈ N, and therefore

H(Y) = hKS(s2, µ
Y, ˆAV×V ) = hKS(s2

1, µ
X, ÂV ∨ s−1

1 (ÂV )) = 2H(X).

In other words, the KS entropy of (V ∗,P(V )∗, µX, s2
1) is equal to the KS entropy of

((V × V )∗,P(V × V )∗, µY, s2) and corresponds to the entropy rate of Y.

Next consider the stochastic process Z = (X2n−1)∞n=1 and let (V ∗,P(V )∗, µZ, s1) be

the symbolic dynamics of Z. Then Z is the stationary and invariant Markov process

governed by the transition matrix P 2 and, from Proposition 5.4.3 and Corollary 5.3.3,

H(Z) = hKS(s1, µ
Z) = hKS(s1, µ

Z, ÂV ) = 3
2 ln 2. Thus Propositions 5.4.2 and 5.4.3

are not contradictory as 2H(P ) = 2H(X) = hKS(s2
1, µ

X) corresponds to the entropy

rate of Y, whereas H(P 2) = H(Z) = hKS(s1, µ
Z) corresponds to the entropy rate of

Z.

5.5 Entropy in Data Compression

Next we revisit the entropy of random variables for the purpose of data compression.

We will discuss extensions to quantum data compression in Subsection 7.3.1. In this

section, all codings will be done into strings of bits. The extensions to d-bits can be

done easily.
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Let S be a finite or countable set equipped with the power set σ-algebra P(S),

and let X be a random variable with values in S. The set S will be referred to as

the symbols set that we wish to encode. In the literature, the set S is referred to

as the set of object, the message set, or sometimes even the index set. For any set Y ,

we will denote by Y + the set ∪∞`=0Y
` which can be thought of as the collection of all

possible strings from Y , where Y 0 denotes the empty set (or empty string). Lastly,

let A = {0, 1} be the binary alphabet. A code, also referred to as a source code,

C : S → A+ is a mapping from S to A+, strings with letters in the binary alphabet

A. For each x ∈ S, we refer to C(x) as the codeword of the symbol x. We define

` : A+ → N0, where N0 = N ∪ {0}, by `(a) = m whenever a ∈ Am and refer to `(a)

as the length of a.

The expected length of a code C on a symbol set S is given by

EL(C) :=
∑
x∈S

p(x)`(x) = E[`(C(X))], (5.13)

where p is the pmf of the random variable X and the expectation E is taken with

respect to p.

A code C is said to be non-singular whenever

x 6= y ⇒ C(x) 6= C(y), for all x, y ∈ S; (5.14)

i.e. whenever C is an injective map and hence the codewords are pairwise distin-

guishable. We extend the code C to the extended code, also called the extension

of C, C+ : S+ → A+ by concatenation. That is to say

C+(x1x2 · · ·xn) = C(x1)C(x2) · · ·C(xn), (5.15)

for all x1x2 · · ·xn ∈ Sn and n ∈ N, and we define C+(∅) = ∅. We call the code C

uniquely decodable whenever its extension C+ is non-singular; i.e. C is uniquely

decodable whenever all strings of symbols from S are pairwise distinguishable.
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An extremely useful class of uniquely decodable codes are the so-called instan-

taneous (or prefix-free) codes. A code is said to be prefix-free if no codeword is

the prefix of another; i.e. for every distinct pair x, y ∈ S there is no a ∈ A+ such

that C(x)a = C(y). Prefix-free codes are called instantaneous because the decoder is

able to read out each codeword from a string of codewords, instantaneously, as soon

as she sees that word appear in a string and without waiting for the entirety of the

string.

The Kraft-McMillan Inequality is fundamental in classical data compression.

Theorem 5.5.1. (Kraft-McMillan Inequality, [19, Theorems 5.2.1 and 5.5.1]) For

any uniquely decodable code over a symbol set S with cardinality |S| = m ∈ N, the

codeword lengths `1, `2, . . . , `m must satisfy the inequality

m∑
i=1

2−`i ≤ 1.

Conversely, given a set of codeword lengths that satisfies this inequality, there exists

an instantaneous code with these code lengths.

Remark 5.5.2. The Kraft-McMillan Inequality is sometimes referred to only as the

Kraft Inequality. This is due to the fact that Kraft was the first to prove the in-

equality in [39], although his original theorem refers only to instantaneous codes.

McMillan later extended Kraft’s work to include all uniquely decodable codes in [42].

Furthermore, it is worth noting that the Kraft-McMillan inequality can be extended

to a countable set of symbols (see Theorem 5.2.2 and the corollary following Theo-

rem 5.5.1 in [19]). When including countable sets of symbols, the inequality is referred

to as the Extended Kraft-McMillan Inequality.

An immediate corollary to the Kraft-McMillan Inequality is the following:

Corollary 5.5.3. If `1, `2, . . . , `m are the codeword lengths for any uniquely decodable

code, then there exists an instantaneous code with these same code lengths.
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We call a uniquely decodable code C optimal whenever the expected length

EL(C) is minimized; i.e. the optimal uniquely decodable code is given by

Copt := argminC{EL(C) :
∑
i

2−`i ≤ 1}.

We set EL∗(X) := EL(Copt) the optimal expected length of X. The results for

the optimal expected length are summarized in the following:

Theorem 5.5.4. ([19, Theorem 5.4.1]) Let X be a random variable with range in

the symbol set S. Then the optimal expected length of X satisfies the inequality

H(X) ≤ EL∗(X) < H(X) + 1,

where H(X) is the Shannon entropy of X, i.e. H(X) = −∑m
i=1 pi log pi where (pi)i∈S

is the pmf of X.

Well known examples of codes which satisfy the inequality of Theorem 5.5.4 are the

so-called Huffman codes and Shannon-Fano codes.

In the above theorem, we are only interested in the compressability of single

codewords. Suppose instead that we wish to compress strings of codewords with

code distributions given by a stochastic process X = (Xi)∞i=1. Then, for each n ∈ N,

Theorem 5.5.4 holds for the random vector (X1, X2, . . . , Xn), giving

H(X1, X2, . . . , Xn) ≤ EL∗(X1, X2, . . . , Xn) < H(X1, X2, . . . , Xn) + 1.

For each n ∈ N, we set

EL∗n(X) := 1
n
EL∗(X1, X2, . . . , Xn) (5.16)

to be the optimal expected codeword length per symbol for the first n symbols.

We can then express the optimal expected codeword length per symbol (over all

symbols) in terms of the entropy rate (Equation (5.9) or (5.10)).
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Theorem 5.5.5. ([19, Theorem 5.4.2]) The minimum expected codeword length per

symbol for a stochastic process X = (Xi)∞i=1 satisfies

H(X1, X2, . . . , Xn)
n

≤ EL∗n(X) < H(X1, X2, . . . , Xn)
n

+ 1
n
.

Moreover, if X is such that the limit defining entropy rate exists (e.g. X is a stationary

stochastic process), then

EL∗n(X)→ H(X) as n→∞.

In particular, if X consists of independent identically distributed (i.i.d.) copies of a

random variable X, then

EL∗n(X)→ H(X) as n→∞.

The fact thatH(X) = H(X) for any stochastic process X consisting of i.i.d. copies

of a random variable X is a simple consequence of Theorem 5.2.4. This finishes our

brief overview of data compression in classical information theory. For a more detailed

exposition see [19, Chapter 5].
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Chapter 6

Słomczyński-Życzkowski Entropy

The remaining chapters are devoted to the presentation of dynamical entropy in

quantum systems. Unlike classical systems, where KS entropy and entropy rate have

established themselves as the dynamical entropies, there are many competing defini-

tions for quantum dynamical entropy (QDE) (all of which are valid generalizations of

KS entropy). Moreover, the relationship between the different definitions is not fully

understood, although some work in this direction has been done (e.g. [4, 61, 46]).

In this chapter we consider the QDE introduced by Słomczyński and Życzkowski

in [59]. In Section 6.1 we provide the definitions for the Słomczyński-Życzkowski

dynamical entropy. In Theorem 6.2.5 at the end of Section 6.2 we show that SZ

entropy is not linear in the time interval between successive measurements which

answers an open problem posed in [59, page 5692 Question (2)]. This result is in

contrast to KS entropy which is linear in time (see Proposition 5.4.2). Moreover,

since entropy rate is nonlinear in time (see Proposition 5.4.3), the result gives further

evidence that measurements of a deterministic quantum system produce properties

that are probabilistic in nature. In Section 6.3, we apply SZ entropy to the Hadamard

walk and its square with a variety of Lüders - von Neumann instruments. The results

in Theorems 6.3.2 and 6.3.3 show explicitly the nonlinearity of SZ entropy established

in Theorem 6.2.5. Moreover, by comparing the results of Theorems 6.3.2 and 6.3.3,

we provide further evidence of the sensitivity of quantum systems to measurement.
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6.1 SZ Entropy: Definition

Słomczyński and Życzkowski introduced their version of a QDE in 1994 in [59]. In

that paper, the authors use a semi-classical approach to develop a QDE using the

general notions of state space, phase space, observables and instruments introduced in

Chapter 3. A key benefit of the QDE introduced in [59] is that it is not guaranteed to

be zero for finite systems, unlike some of the others. This is because their approach, at

least as developed here, draws on the intuitions gained by study probabilistic random

walks (Section 2.1). Compared to some of the other approaches, which are guaranteed

to be zero for finite systems and have a dynamical systems type viewpoint, we already

see parallels to classical dynamical entropies (see Section 5.4).

Let (X,K) be a state space and u ∈ K be a state. Let (Ω,Σ) be a phase space,

T an instrument and Θ a τ -preserving automorphism of X; i.e. τ(Θv) = τ(v) for

all v ∈ X. Let (Ω∗,Σ∗) be the measurable space defined for symbolic dynamics in

Section 5.3. We will define an instrument and state-dependent probability measure,

µ(Θ,T ,u), on (Ω∗,Σ∗) which is similar, but not the same, as the one we used for symbolic

dynamics. First, we define the values of µ(Θ,T ,u) on the cylinder sets in Σ∗ with an

initial interval of time sequences, {k}nk=1 for some n ∈ N, by

µ(Θ,T ,u)(C
(
A1 ··· An
1 ··· n

)
) = τ(T (An) ◦Θ ◦ · · · ◦ T (A2) ◦Θ ◦ T (A1)u), (6.1)

for all A1, . . . , An ∈ Σ. Since the collection of cylinder sets with an initial interval of

time sequences form a π-system which generates Σ∗, there is a unique extension of

µ(Θ,T ,u) to (Ω∗,Σ∗) by the π-λ Theorem.

Notice that, for a stochastic process X, we defined the measure µX first on cylinder

sets with arbitrary time sequences (Equation (2.10)), whereas the measure, µ(Θ,T ,u)

in Equation (6.1), was defined first on the cylinder sets with an initial interval of time

sequences. By defining µ(Θ,T ,u) in this way, we have that, for A1, A3 ∈ Σ,

µ(Θ,T ,u)(C
(
A1 A3
1 3

)
) = µ(Θ,T ,u)(C

(
A1 Ω A3
1 2 3

)
)
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= τ(T (A3) ◦Θ ◦ T (Ω) ◦Θ ◦ T (A1)u),

which is not necessarily equal to τ(T (A3) ◦ Θ2 ◦ T (A1)u). Therefore we interpret

µ(Θ,T ,u)(C
(
A1 A3
1 3

)
) as the probability that a system in initial state u will be measured

at times 1, 2, 3 and record the measurement sequence (A1, A3) at times 1 and 3. In

other words, we must assume that the instrument T is interacting with the system

at all integer times, regardless of whether or not we record a measurement. Just as

in Section 2.3, we will use the notation

µ(Θ,T ,u)(A1, . . . , An) := µ(Θ,T ,u)(C
(
A1 ··· An
1 ··· n

)
), (6.2)

for all A1, . . . , An ∈ Σ and n ∈ N, whenever we consider initial time sequences

1, . . . , n.

Define the (Ω∗,Ω) stochastic process X(Θ,T ,u) = (X(Θ,T ,u)
n )∞n=1 by settingX(Θ,T ,u)

n (x) =

xn for each x = (xm)m∈N ∈ Ω∗ and, for each C ∈ Par(Ω), define the (Ω∗, C) stochastic

process X(Θ,T ,u)
C = (X(Θ,T ,u,C)

n )∞n=1 by X(Θ,T ,u,C)
n = iC ◦ X(Θ,T ,u)

n , where iC : Ω → C is

the natural map that assigns to each x ∈ Ω the unique A ∈ C such that x ∈ A. Note

that even though the formulas of X(Θ,T ,u) and X(Θ,T ,u)
C do not depend on Θ, T and

u, the measure µ(Θ,T ,u) on their domain, Ω∗, depends on Θ, T and u.

We define the Słomczyński-Życzkowski (SZ) entropy of (Θ,T , u) with

respect to C to be the entropy rate of the stochastic process X(Θ,T ,u)
C . It is related

to µ(Θ,T ,u) by the equation

hSZ(Θ, T , u, C) := H(X(Θ,T ,u)
C ) = lim sup

n→∞

1
n

∑
Ak∈C

1≤k≤n

η(µ(Θ,T ,u)(A1, . . . , An)). (6.3)

The second equality follows from Equations (5.7) and (5.9).

Remark 6.1.1. Let (Ω∗,Σ∗, µ(Θ,T ,u), s) be the symbolic dynamics for the system

(Θ, T , u), where s is the shift transformation given in Equation (2.11). From Propo-

sition 5.3.1 and the definition of X(Θ,T ,u)
C it is clear that

hSZ(Θ, T , u, C) = H(X(Θ,T ,u)
C ) = hKS(s, Ĉ).
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Next we split the SZ entropy of (Θ, T , u) with respect to C into two different

causes for randomness. The first cause of randomness is that caused by the choice of

instrument, is referred to as the measurement SZ entropy and is given by

hSZmeas(T , u, C) := hSZ(1, T , u, C). (6.4)

The second cause of randomness is given by the dynamics; i.e. the automorphism Θ,

is referred to as the dynamical SZ entropy, and is given by the difference

hSZdyn(Θ, T , u, C) := hSZ(Θ, T , u, C)− hSZmeas(T , u, C).

Finally, we define the dynamical SZ entropy of (Θ,T , u) by

hSZdyn(Θ, T , u) := sup
C∈Par(Ω)H(Ĉ)<∞

hSZdyn(Θ, T , u, C). (6.5)

In the remainder of this section, we consider the dynamical SZ entropy of the

commutative QDS associated to a classical DS with sharp measurements (Exam-

ple 3.2.3). We begin by showing that the measurement SZ entropy for classical sharp

measurement instruments is equal to zero.

Lemma 6.1.2. Let (Ω,B), (X,K), τ and T be as in Example 3.2.3. Then, for any

state µ ∈ K and partition C ∈ Par(Ω) with finite entropy, we have hSZmeas(T , µ, C) = 0.

Proof. Fix a state µ ∈ K and a partition C ∈ Par(Ω) with finite entropy. Then, for

any n ∈ N and A1, . . . , An ∈ C, we have that

µ(1,T ,µ)(A1, . . . , An) =


µ(A1) if A1 = · · · = An

0 else

Therefore

hSZmeas(T , µ, C) = lim
n→∞

1
n

∑
A∈C

η(µ(A))

= lim
n→∞

1
n
H(C) = 0.
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The following result shows that the dynamical SZ entropy is a valid generalization

of KS entropy (Equation (5.5)) by showing that the KS entropy of a dynamical system

with sharp measurements is equal to the dynamical SZ entropy of that system. The

result is claimed without proof in [59, Proposition 4(A)]; we provide a proof for

completeness.

Proposition 6.1.3. Let (Ω,B), (X,K), τ and T be as in Example 3.2.3. Let µ ∈ K

be a state; i.e. a probability measure on (Ω,B), and f : Ω → Ω a measurable map

so that (Ω,B, µ, f) is a DS. Let Tf : X → X be the Koopman operator given in

Equation (2.12). Then for each C ∈ Par(Ω), hKS(f, C) = hSZdyn(Tf , T , µ, C).

Proof. Fix a partition C ∈ Par(Ω). For all n ∈ N0 and A0, . . . , An ∈ C we see that

µ(Tf ,T ,µ)(A1, . . . , An) = τ(T (An) ◦ Tf ◦ · · · ◦ Tf ◦ T (A0)µ) by (6.1)

= (T (An) ◦ Tf ◦ · · · ◦ Tf ◦ T (A0))µ(X)

= (T (An) ◦ Tf ◦ · · · ◦ T (A1) ◦ Tf )µ(A0) by (3.2)

= (T (An) ◦ Tf ◦ · · · ◦ Tf ◦ T (A1))µ(f−1(A0))

= ...

= µ(Ain ∩ f−1(Ai1) ∩ · · · ∩ f−n(Ai0)).

where we used Equation (2.12) in equality 4. Using Remark 2.2.3 and Lemma 6.1.2,

we get

hKS(f, C) = hSZ(Tf , T , µ, C) = hSZdyn(Tf , T , µ, C).

If we compare Proposition 6.1.3 to Proposition 4.2.1 (and Corollary 7.1.2 given

in the next chapter) we see the versatility of the SZ entropy. Namely, we are able to

compare the SZ and KS entropies directly in the classical mechanics picture without

resorting to an associated QDS. It is worth noting, however, that the dynamical SZ

entropy of the associated QDS is still equal to the KS entropy of the original DS.
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6.2 SZ entropy with Lüders - von Neumann Instruments

In this section, we restrict our attention to the SZ entropy of quantum systems

measured with Lüders - von Neumann instruments (see Example 3.2.4). The following

lemma, stating that the measurement SZ entropy is zero for Lüders - von Neumann

instruments, is claimed in [58]. For completeness we provide the proof.

Lemma 6.2.1. Let (Ω,P(Ω)), (X,K) and H be as in Example 3.2.4 and let T be a

Lüders-von Neumann instrument. Then hSZmeas(T , ρ, C) = 0 for any state ρ ∈ K and

any C ∈ Par(Ω) with finite entropy; i.e. H(Ĉ) <∞.

Proof. Let (Pi)i∈Ω be the family of pairwise orthogonal projections that governs T

and fix a state ρ ∈ K. Since the family, (Pi)i∈Ω, is pairwise orthogonal we have, for

any n ∈ N and A1, . . . , An ∈ P(Ω), that

µ(1,T ,ρ)(A1, . . . , An) =


∑
a∈A1 tr(PaρPa) = µ(1,T ,ρ)(A1), if A1 = · · · = An

0, else

Therefore, for any C ∈ Par(Ω) with H(Ĉ) <∞, we have

hSZmeas(T , ρ, C) = lim
n→∞

1
n

∑
A∈C

η(µ(1,T ,ρ)(A)) by (6.3) and (6.4)

= lim
n→∞

1
n
H(Ĉ) = 0 by the definition of Ĉ.

Remark 6.2.2. It is natural to consider only the partitions C ∈ Par(Ω) with finite

entropy in Lemma 6.2.1, because these are the only partitions considered in Equa-

tion (6.5).

Fix a discrete phase space (Ω,Σ) with |Ω| = N . Then Lemma 6.2.1, together

with Equation (5.12), implies that hSZdyn(Θ, T , ρ, C) = hSZ(Θ, T , ρ, C) for any unitary

transformation Θ, partition C, state ρ, and coherent states instrument T . Recall that,
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given a unitary U on a Hilbert spaceH, the unitary transformation, Θ : X → X,

of U is given by

Θ(·) = U · U∗. (6.6)

Next we examine the properties of SZ entropy for coherent states instruments.

The following lemma gives a simplification of Equation (6.1) for coherent states in-

struments. The moreover statement of the following lemma is mentioned in [58, page

3] without proof.

Lemma 6.2.3. Let H, (X,K), τ and (Ω,P(Ω)) be as in Example 3.2.4. Let γ =

(Pi)i∈Ω be a partition of unity on H such that each Pi is a rank-1 projection, and

let ai ∈ H be such that Pi = |ai〉〈ai|, for each i ∈ Ω. Let T be the coherent states

instrument governed by γ, U a unitary operator on H, Θ the unitary transformation

of U and ρ ∈ K a state. Then, for all n ∈ N and A1, . . . , An ∈ P(Ω),

µ(Θ,T ,ρ)(A1, . . . , An) =
∑

ak∈Ak
1≤k≤n

〈a1|ρ|a1〉
n∏
k=2
|〈ak|U |ak−1〉|2. (6.7)

Moreover, X(Θ,T ,ρ) is a Markov process governed by the transition matrix P on Ω with

(i, j)-entry given by |〈ai|U |aj〉|2, for all i, j ∈ Ω.

Proof. By direct calculation, Equation (6.1) simplifies to

µ(Θ,T ,ρ)(A1, . . . , An) = τ(T (An) ◦Θ ◦ · · · ◦Θ ◦ T (A1)ρ)

=
∑

ak∈Ak
1≤k≤n

tr(T ({an}) ◦Θ ◦ · · · ◦Θ ◦ T ({a1})ρ)

=
∑

ak∈Ak
1≤k≤n

tr(PanU · · ·UPa1ρPa1U
∗ · · ·U∗Pan)

=
∑

ak∈Ak
1≤k≤n

tr(|an〉〈an|U · · ·U |a1〉〈a1|ρ|a1〉 ×

〈a1|U∗ · · ·U∗|an〉〈an|)

=
∑

ak∈Ak
1≤k≤n

〈a1|ρ|a1〉
n∏
k=2
|〈ak|U |ak−1〉|2,
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where the second to last equality follows from writing Pak = |ak〉〈ak|, for all 1 ≤ k ≤ n

and the last equality follows since 〈ak−1|U∗|ak〉 = 〈ak|U |ak−1〉, for all 2 ≤ k ≤ n. It

is immediately clear that X(Θ,T ,ρ) is a stationary Markov process governed by the

transition matrix P .

It is worth noting that Equation (6.7) is a simplification of the probabilities in

[59, Equations (27)-(29)] for Lüders-von Neumann coherent states instruments.

Corollary 6.2.4. Let H, (X,K), τ and (Ω,P(Ω)) be as in Example 3.2.4. γ =

(Pi)i∈Ω be a partition of unity on H such that each Pi is a rank-1 projection, and let

ai ∈ H be such that Pi = |ai〉〈ai|, for each i ∈ Ω, T the coherent states instrument

governed by γ, U a unitary operator on H, Θ the unitary transformation of U , ρ ∈ K

a state and P the transition matrix defined in Lemma 6.2.3. Then

hSZ(Θ, T , ρ,A) = lim
n→∞

∑
y∈Ω

(P nµ)y
∑
x∈Ω

η(|〈ax|U |ay〉|2),

where µ = p
X

(Θ,T ,ρ)
1

and A is the atomic partition of Ω. Moreover, whenever µ =

(µy)y∈Ω is P -invariant, we have

hSZ(Θ, T , ρ,A) =
∑
y∈Ω

µy
∑
x∈Ω

η(|〈ax|U |ay〉|2).

Proof. This follows immediately from Lemma 6.2.3 and Theorem 5.2.4.

In [59, Section IV] the authors require that the state ρ is invariant in the sense

that

Θ(T (Ω)ρ) = ρ (6.8)

when defining SZ entropy for coherent states instruments. This seems to be due

to the fact that, in [59, Proposition 2(B)], the authors show that, under Assump-

tion (6.8), for a general coherent states instrument, the stochastic process X(Θ,T ,ρ) is

stationary and hence, by the “moreover” part of Corollary 6.2.4, hSZ(Θ, T , ρ,A) =∑
y∈Ω µy

∑
x∈Ω η(|〈ax|U |ay〉|2). We find Assumption (6.8) restrictive and do not adopt
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it here. It is also worth mentioning that another invariance condition often imposed

on quantum dynamical systems is that Θ(ρ) = ρ. For instance, for AF entropy in [6,

Page 76] which is formulated for general C∗-algebras and defined in Chapter 7, the

authors require that a state ω satisfies ω ◦Θ = ω which is equivalent to Θ(ρ) = ρ in

the Hilbert space quantum mechanics picture whenever ω is a normal state given by

ω(·) = tr(ρ·). Also, given a Hilbert space H, a unitary operator U on H and a norm-1

eigenvector, x ∈ H, of U , the pure (or vector) state ρ = |x〉〈x| satisfies Θ(ρ) = ρ,

where Θ is the unitary transformation of U . There has been a lot of interest in

finding these pure, invariant states in the literature for UQRWs (see e.g. [36, 24]).

Therefore Θ(ρ) = ρ seems another natural definition of invariance. However, we will

show in Proposition 6.3.1 that Θ(ρ) = ρ does not imply that X(Θ,T ,ρ) is a stationary

stochastic process.

The following result states that SZ entropy is not linear in the time interval be-

tween successive measurements which answers an open problem posed in [59, page

5692 Question (2)]. This result is in contrast to KS entropy which is linear in time

(see Proposition 5.4.2). Moreover, since entropy rate is nonlinear in time (see Propo-

sition 5.4.3), the result gives further evidence that measurements of a deterministic

quantum system produce properties that are probabilistic in nature.

Theorem 6.2.5. Let (X,K) and τ be as in Example 3.2.4. Let (Ω,P(Ω)) be a discrete

phase space with |Ω| = N for some N ∈ N, T a Lüders-von Neumann instrument,

Θ a τ -preserving automorphism and ρ ∈ K a state. Then hSZdyn(Θn, T , ρ) ≤ N for all

n ∈ N. Therefore, if hSZdyn(Θ, T , ρ) 6= 0, then hSZdyn(Θn, T , ρ) 6= nhSZdyn(Θ, T , ρ) for all

sufficiently large n ∈ N.

Proof. Let (Ω∗,P(Ω)∗, µ(Θn,T ,ρ), s) be the symbolic dynamics of (Θn, T , ρ) for each

n ∈ N and let A be the atomic partition of Ω. Using Equation (5.12), we have that

Hµ(Θn,T ,ρ)(∨mk=1s
−k(Â)) ≤ ln(| ∨mk=1 s

−k(Â)|) ≤ m lnN , for all n,m ∈ N. Therefore

hSZdyn(Θn, T , ρ,A) ≤ lnN , for each n ∈ N. If hSZdyn(Θ, T , ρ,A) = k 6= 0, then we have,
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for all n > lnN
k
, that

hSZdyn(Θn, T , ρ,A) ≤ lnN < nhSZdyn(Θ, T , ρ,A)

Since Â is a generating partition for (Ω∗,P(Ω)∗, µ(Θn,T ,ρ), s), we have SZ
dyn(Θn, T , ρ)

= hSZdyn(Θn, T , ρ,A) and nhSZdyn(Θ, T , ρ,A) = nhSZdyn(Θ, T , ρ). The result follows.

In [58] the authors establish a class of instruments which have positive dynamical

SZ entropy and we give further such examples in Section6.3. Therefore Proposi-

tion 6.2.5 does establish the nonlinearity of dynamical SZ entropy in time. In the

next section we give examples exhibiting the nonlinearity of dynamical SZ entropy.

6.3 SZ Entropy of the Hadamard walk

This section is dedicated to applying SZ entropy to the Hadamard walk and its square

with a variety of instruments. The results in Theorems 6.3.2 and 6.3.3 show explicitly

the nonlinearity of SZ entropy established in Theorem 6.2.5. Moreover, by comparing

the results of Theorems 6.3.2 and 6.3.3, we provide further evidence of the sensitivity

of quantum systems to measurement.

Let H = HC⊗HP , C = {R,L} and take the phase space to be (C×V,P(C×V )).

Take (X,K) be the state space (Ssa1 (H), S+
1 (H)) as in Example 3.2.4. Define the

parition of unity γ = (Pe)e∈C×V , where, for each (c, v) ∈ C × V ,

Pe = |c, v〉〈c, v|, whenever e = (c, v) ∈ C × V. (6.9)

Let T be the coherent states instrument governed by γ. The next proposition states

that, for a unitary transformation Θ and a state ρ ∈ K, Θ(ρ) = ρ does not imply

that the associated Markov chain, X(Θ,T ,ρ), is stationary. The result shows that

this natural definition of invariance for ρ is not sufficient for the stationarity of

X(Θ,T ,ρ), whereas Assumption (6.8), imposed by the authors of [59], does guaran-

tee that X(Θ,T ,ρ) is stationary.
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Proposition 6.3.1. Let Θ be the Hadamard walk on a vertex set V with |V | = N ≥ 2

defined in Equation (4.3). Let T be the coherent states instrument given by the

partition of unity γ = (Pe)e∈C×V (Equation (6.9)) and let A be the atomic partition

on C × V . Let |x〉 = 1√
N(4+2

√
2)

((1 +
√

2)|R〉 + |L〉) ⊗ ∑
v∈V |v〉 (which is a unit

norm eigenvector for the unitary matrix, U , of the Hadamard walk) and ρ = |x〉〈x|.

Then the pmf, p
X

(Θ,T ,ρ)
1

, of X(Θ,T ,ρ)
1 is not P -invariant, where P is the transition

matrix defined in Lemma 6.2.3. Furthermore, the dynamical SZ entropy is equal to

hSZdyn(Θ, T , ρ) = ln 2.

Proof. For each (c, v) ∈ C × V ,

p
X

(Θ,T ,ρ)
1

(c, v) = 〈c, v|ρ|c, v〉 = 1
N(4 + 2

√
2)

((3 + 2
√

2)δc,R + δc,L). (6.10)

Also, for each e = (c, v), f = (d, u) ∈ C × V , a straightforward calculation yields

|〈e|U |f〉|2 =



1
2 c = R and u = v − 1

1
2 c = L and u = v + 1

0 else

(6.11)

= 1
2δu,v−(−1)δc,L . (6.12)

Recall that |〈e|U |f〉|2 is the (e, f)-entry of P , for each e, f ∈ C × V . Thus, for each

e = (c, v) ∈ C × V ,

(Pp
X

(Θ,T ,ρ)
1

)e =
∑

f∈C×V
p
X

(Θ,T ,ρ)
1

(f)|〈e|U |f〉|2

= 1
2(p

X
(Θ,T ,ρ)
1

(R, v − (−1)δc,L) + p
X

(Θ,T ,ρ)
1

(L, v − (−1)δc,L))

= 1
2( 3 + 2

√
2

N(4 + 2
√

2)
+ 1
N(4 + 2

√
2)

) = 1
2N , by (6.10)

where we used Equation (6.11) in equality 2.

Therefore Pp
X

(Θ,T ,ρ)
1

6= p
X

(Θ,T ,ρ)
1

and thus X(Θ,T ,ρ) is not stationary. Continuing to

find the dynamical SZ entropy, we see that Pp
X

(Θ,T ,ρ)
1

is the uniform distribution, µ,
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on C×V , which is invariant with respect to P . Thus Corollary 6.2.4 and Lemma 6.2.1

imply that

hSZdyn(Θ, T , ρ,A) =
∑

f∈C×V
µf

∑
e∈C×V

η(|〈e|U |f〉|2) =
∑

f∈C×V

1
2N 2η(1

2) = ln 2.

This implies which is equal to hSZdyn(Θ, T , ρ) = ln 2 because Â is a generating partition

for (Ω∗,P(Ω)∗, µ(Θ,T ,ρ), s) by Corollary 5.3.3.

As the UQRW is a quantum analogue of the classical random walk, it is natural

to consider measurements of the position space only. There are two options for how

to go about this. One option is to take the phase space to be (C ×V,P(C ×V )), the

coherent states instrument T to be given by the partition of unity γ = (Pe)e∈C×V ,

defined in Equation (6.9), and calculate the dynamical SZ entropy with respect to

the partition

CV = {Cv}v∈V , where Cv := {|R, v〉, |L, v〉}, for each v ∈ V. (6.13)

On the other hand we could take the phase space to be (V,P(V )), define the projec-

tions

Pv = 1HC ⊗ |v〉〈v|, for each v ∈ V, (6.14)

and calculate the dynamical SZ entropy of the Lüders-von Neumann instrument V

with respect to the atomic partition of V , where V is governed by the partition of

unity λ = (Pv)v∈V . We will calculate the entropies for both these scenarios (with the

same initial state) on the Hadamard walk, Θ, and its square, Θ2. We will see that

the two interpretations do not yield the same entropy. This is further evidence to the

sensitivity of a closed quantum system to measurement. Furthermore, Theorems 6.3.2

and 6.3.3 provide concrete examples illustrating the fact that dynamical SZ entropy

is not linear in time. In fact, one can also see that the dynamical SZ entropy is

nonlinear in time by considering Θ3 in Proposition 6.3.1, but we do not include the

calculation here.

66



www.manaraa.com

Theorem 6.3.2. Let Θ be the the Hadamard walk on V with |V | = N ≥ 3. Let T

be the coherent states instrument governed by the partition of unity γ = (Pe)e∈C×V

given in Equation (6.9), ρ = 1H

2N and CV the partition given in Equation (6.13). Then

hSZdyn(Θ, T , ρ, CV ) = ln 2 and hSZdyn(Θ2, T , ρ, CV ) = 3
2 ln 2.

Proof. Notice that p
X

(Θ,T ,ρ)
1

(c, v) = 〈c, v|ρ|c, v〉 = 1
2N for all (c, v) ∈ C × V and recall

that the transition matrix P , which governs Θ with respect to the coherent states

instrument T , has entries given by Equation (6.11). In the following, it will be more

convenient to rewrite Equation (6.11) viewing f as the fixed index. In this manner,

for each f = (c, v) ∈ C × V , we have

U |f〉 = 1√
2

(|R, v + 1〉+ (−1)δc,L |L, v − 1〉), (6.15)

and hence

|〈e|U |f〉|2 = 1
2(δe,(R,v+1) + δe,(L,v−1)). (6.16)

Also, we have

µ(Θ,T ,ρ)(Cv1 , . . . , Cvn) =
∑

ck∈{R,L}
1≤k≤n

〈c1, v1|ρ|c1, v1〉
n∏
k=2
|〈ck, vk|U |ck−1, vk−1〉|2

=
∑

ck∈{R,L}
1≤k≤n

1
2N

n∏
k=2

(
δvk,vk−1+1δck,R + δvk,vk−1−1δck,L

2

)

= 1
N

n∏
k=2

(
δvk,vk−1+1 + δvk,vk−1−1

2

)
,

for all v1, . . . , vn ∈ V , where we used Equation (6.7) in equality 1 and Equation (6.16)

in equality 2. These are exactly the probabilities pX(v1, . . . , vn) of a stationary Markov

chain X which is governed by the transition matrix, Q, for the unbiased random walk

on the N -cycle V . Therefore

hSZdyn(Θ, T , ρ, CV ) = H(Q) = ln 2,

where the second equality follows from Proposition 5.4.3.
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Next we show that hSZdyn(Θ2, T , ρ, CV ) = 3
2 ln 2. For all f = (c, v) ∈ C×V , we have

U2|f〉 = 1√
2
U(|R, v + 1〉+ (−1)δc,L|L, v − 1〉) by (6.15) (6.17)

= 1
2((−1)δR,c|L, v − 2〉+ (−1)δL,c |R, v〉+ |L, v〉+ |R, v + 2〉)

and hence

|〈e|U2|f〉|2 =



1
4 e = (R, v) or (L, v)

1
4 e = (R, v + 2)

1
4 e = (L, v − 2)

0 else

(6.18)

Notice that |〈e|U2|f〉|2 in Equation (6.18) does not depend on the coin space compo-

nent of f . Therefore

µ(Θ2,T ,ρ)(Cv1 , . . . , Cvn)

=
∑

ck∈{R,L}
1≤k≤n

〈c1, v1|ρ|c1, v1〉
n∏
k=2
|〈ck, vk|U2|ck−1, vk−1〉|2 by (6.7)

=
∑

ck∈{R,L}
1≤k≤n

1
2N

n∏
k=2

(
δck,Lδvk,vk−1−2 + δck,Lδvk,vk−1

4

+
δck,Rδvk,vk−1 + δck,Rδvk,vk−1+2

4

)

= 1
N

n∏
k=2

(1
4δvk,vk−1−2 + 1

2δvk,vk−1 + 1
4δvk,vk−1+2

)
,

for all v1, . . . , vn ∈ V , where we used Equation (6.7) in equality 2. These are exactly

the probabilities pY(v1, . . . , vn) of a stationary Markov chain Y which is governed by

the transition matrix Q2. Therefore

hSZdyn(Θ2, T , ρ, CV ) = H(Q2) = 3
2 ln 2,

where the second equality follows from Proposition 5.4.3.

Theorem 6.3.3. Let Θ be the Hadamard walk on V with |V | = N ≥ 3 defined

in Equation (4.3). Let V be the Lüders-von Neumann instrument governed by the
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partition of unity λ = (Pv)v∈V defined in Equation (6.14) and ρ = 1H

2N . Then

hSZdyn(Θ,V , ρ) = ln 2 and hSZdyn(Θ2,V , ρ) = 4
3 ln 2.

Proof. Notice that from Equation (6.1), for each m,n ∈ N and v1, . . . , vn ∈ V , we

have

µ(Θm,V,ρ)(v1, . . . , vn) := τ(V(vn) ◦Θm ◦ · · · ◦Θm ◦ V(v1)ρ) (6.19)

= tr(PvnUm · · ·UmPv1ρPv1(Um)∗ · · · (Um)∗Pvn).

Also, notice that ρ = 1
2N
∑
v∈V (|R, v〉〈R, v| + |L, v〉〈L, v|) and so, for each m,n ∈ N

and v1, . . . , vn ∈ V , Equation (6.19) becomes

µ(Θm,V,ρ)(v1, . . . , vn)

=
∑

c∈{R,L}

1
2N tr(PvnUm · · ·UmPv1 |c, v1〉〈c, v1|Pv1(Um)∗ · · · (Um)∗Pvn)

=
∑

c,d∈{R,L}

1
2N |〈d, vn|U

mPvn−1 · · ·Pv1U
m|c, v1〉|2. (6.20)

Let A be the atomic partition of V . We first show that hSZdyn(Θ,V , ρ,A) = ln 2.

Notice that for (c, v) ∈ C × V , UPv|c, v〉 = U |c, v〉 and is given by Equation (6.15).

Thus, by direct calculation, we have that

µ(Θ,V,ρ)(v1, . . . , vn)

=
∑

c1,cn∈{R,L}

1
2N |〈cn, vn|UPvn−1 · · ·Pv2U |c1, v1〉|2 by (6.20)

= 1
2N

∑
c‘,cn∈{R,L}

|〈cn, vn|UPvn−1 · · ·Pv1 ×

( 1√
2

(|R, v1 + 1〉+ (−1)δc1,L|L, v1 − 1〉))|2

= 1
2N

∑
c1,c2,cn∈{R,L}

1
2(δv2,v1+1δc2,R + δv2,v1−1δc2,L)×

|〈cn, vn|UPvn−1 · · ·Pv3U |c2, v2〉|2

...

=
∑

ck∈{R,L}
1≤k≤n

1
2N

n∏
k=2

(
δvk,vk−1+1δck,R + δvk,vk−1−1δck,L

2

)
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= 1
N

n∏
k=2

(
δvk,vk−1+1 + δvk,vk−1−1

2

)
,

for all v1, . . . , vn ∈ V , which are exactly the probabilities pX(v1, . . . , vn) of a stationary

Markov chain X which is governed by the transition matrix, Q, for the unbiased

random walk on the N -cycle V . Therefore

hSZdyn(Θ,V , ρ,A) = H(Q) = ln 2,

where the second equality follows from Proposition 5.4.3. Moreover, since Â is a

generating partition for (V ∗,P(V )∗, µ(Θ,V,ρ), s), we have that

hSZdyn(Θ,V , ρ) = ln 2

by Corollary 5.3.3.

Next we show that hSZdyn(Θ2,V , ρ,A) = 4
3 ln 2 using path counting techniques. To

that end, for each n ∈ N and n-tuple v = (v1, . . . , vn) ∈ V n, we set

lv := |{k : k < n such that vk = vk+1 = · · · = vn}|.

Then, we define the sets

Lnc := {v̄ ∈ V n : v̄ = (v, . . . , v) for some v ∈ V },

Lne := {v ∈ V n : lv is even}\Lnc and Lno := {v ∈ V n : lv is odd}\Lnc .

For each n ∈ N and v = (v1, . . . , vn) ∈ V n, we will identify v with the cylinder set

C ( v1 ··· vn
1 ··· n ) and consider Ln := {Lnc , Lne , Lno} as a partition of V ∗.

With this correspondence, we will show that the conditional probabilities,

pX(Θ2,V,ρ)(vn+1|v), for vn+1 given v = (v1, . . . , vn) are dependent upon which set L ∈ Ln

that v belongs to. First, we will determine the change of coin state that occurs after

measuring the walker at the same site a number of times in a row. We claim that

the resulting coin state, after n measurements at a site v, depends only on the initial
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coin state c ∈ {R,L} and the congruence class of n modulo 4. Specifically, for all

n ∈ N, v̄ = (v, . . . , v) ∈ V n+1 and c ∈ {R,L}, we claim the following:

if n ≡ 0 mod 4, then

PvU
2 · · ·PvU2︸ ︷︷ ︸
n times

|c, v〉 = a|c, v〉 for some a ∈ C with |a| = 1
2bn+1

2 c
, (6.21)

if n ≡ 1 mod 4, then

PvU
2 · · ·PvU2|c, v〉 = a|L+ (−1)δc,LR, v〉, for some a ∈ C with |a| = 1

2bn+1
2 c

, (6.22)

if n ≡ 2 mod 4, then

PvU
2 · · ·PvU2|c, v〉 = a|c⊥, v〉 for some a ∈ C with |a| = 1

2bn+1
2 c

, (6.23)

where we set R⊥ = L and L⊥ = R, and, if n ≡ 3 mod 4, then

PvU
2 · · ·PvU2|c, v〉 = a|L− (−1)δc,LR, v〉, for some a ∈ C with |a| = 1

2bn+1
2 c

, (6.24)

where we used the abbreviation |L±R, v〉 := |L, v〉± |R, v〉. We will prove the claims

by induction on n.

The base case, n = 0, is trivial. For the inductive step we will handle the different

congruence classes of n separately. To this end, let m ∈ N with m ≥ 1 and suppose

that for all n < m Equations (6.21)-(6.24) hold for all v̄ ∈ V n+1 and their respective

values of n. Fix v̄ ∈ V m+1 and c ∈ {R,L}. If m ≡ 1 mod 4, then, for some a ∈ C

with |a| = 1
2b
m
2 c
, we have

PvU
2 · · ·PvU2|c, v〉 = PvU

2a|c, v〉 by (6.21)

= a

2 |L+ (−1)δc,LR, v〉 by (6.17),

and Equation (6.22) is satisfied since 1
2·2b

m
2 c

= 1
2b
m+1

2 c
. If m ≡ 2 mod 4, then, for

some a ∈ C with |a| = 1
2b
m
2 c
, we have

PvU
2 · · ·PvU2|c, v〉 = PvU

2a|L+ (−1)δc,LR, v〉 by (6.22)

71



www.manaraa.com

= (−1)δc,La|c⊥, v〉,

where the second equality holds because

U2|R + L, v〉 =
√

2U |R, v + 1〉 = |L, v〉+ |R, v + 2〉 and (6.25)

U2|L−R, v〉 = −
√

2U |L, v − 1〉 = |L, v − 2〉 − |R, v〉,

for all v ∈ V . Thus Equation (6.23) is satisfied since 1
2b
m
2 c

= 1
2b
m+1

2 c
. If m ≡ 3 mod 4,

then, for some a ∈ C with |a| = 1
2b
m
2 c
, we have

PvU
2 · · ·PvU2|c, v〉 = PvU

2a|c⊥, v〉 by (6.23)

= a

2 |L− (−1)δc,LR, v〉 by (6.17),

where we used the fact that (−1)δc⊥,L = −(−1)δc,L in the second equality. Hence

Equation (6.24) is satisfied since 1
2·2b

m
2 c

= 1
2b
m+1

2 c
. If m ≡ 0 mod 4, then, for some

a ∈ C with |a| = 1
2b
m
2 c
, we have

PvU
2 · · ·PvU2|c, v〉 = PvU

2a|L− (−1)δc,LR, v〉 by (6.24)

= −(−1)δc,La|c, v〉 by (6.25)

and hence Equation (6.21) is satisfied since 1
2b
m
2 c

= 1
2b
m+1

2 c
. Therefore the induction

is complete and the claims are verified.

Next we claim that for all v = (v1, . . . , vn) ∈ V n\Lnc with pX(Θ2,V,ρ)(v) 6= 0 there

exists some ψ ∈ HC such that for all vn+1 ∈ V the conditional pmf of X(Θ2,V,ρ) is

given by

pX(Θ2,V,ρ)(vn+1|v1, . . . , vn) =
∑
d∈{R,L} |〈d, vn+1|U2|ψ, vn〉|2

‖ψ‖2 . (6.26)

Indeed, for all v ∈ V n with pX(Θ2,V,ρ)(v) 6= 0, we have

pX(Θ2,V,ρ)(vn+1|v1, . . . , vn)

= µ(Θ2,V,ρ)(v1, . . . , vn+1)
µ(Θ2,V,ρ)(v1, . . . , vn) (6.27)

=
∑
c,d∈{R,L} |〈d, vn+1|U2Pvn · · ·Pv2U

2|c, v1〉|2∑
c,d∈{R,L} |〈d, vn|U2Pvn−1 · · ·Pv2U

2|c, v1〉|2
by (6.20)
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=
∑

c∈{R,L}
qc

∑
d∈{R,L} |〈d, vn+1|U2Pvn · · ·Pv2U

2|c, v1〉|2∑
d∈{R,L} |〈d, vn|U2Pvn−1 · · ·Pv2U

2|c, v1〉|2
, (6.28)

where, for each c ∈ {R,L}, we set

qc :=
∑
d∈{R,L} |〈d, vn|U2Pvn−1 · · ·Pv2U

2|c, v1〉|2∑
c′,d∈{R,L} |〈d, vn|U2Pvn−1 · · ·Pv2U

2|c′, v1〉|2
. (6.29)

Notice that if qc = 0 in Equation (6.29) then the denominator on the right hand side

of Equation (6.28) is also equal to 0. In this case, we will use the convention that

their product is defined and equal to 0.

For each c ∈ {R,L}, we define ψc ∈ HC to be the unique element satisfying the

equation

PvnU
2 · · ·Pv2U

2|c, v1〉 = |ψc, vn〉.

Then Equation (6.28) simplifies to

pX(Θ2,V,ρ)(vn+1|v1, . . . , vn) =
∑

c∈{R,L}
qc

∑
d∈{R,L} |〈d, vn+1|U2|ψc, vn〉|2

‖ψc‖2 , (6.30)

where equality in the denominator follows by Parseval’s identity.

Notice that Equation (6.17) gives

Ran(Pv+2U
2Pv) = span{|R, v + 2〉} and (6.31)

Ran(Pv−2U
2Pv) = span{|L, v − 2〉}, for all v ∈ V .

Moreover, Equation (6.31) implies that, for any operator A ∈ B(H),

Ran(Pv+2U
2PvA) ⊆ span{|R, v + 2〉} and

Ran(Pv−2U
2PvA) ⊆ span{|L, v − 2〉}, for all v ∈ V .

Hence, if v ∈ V n\Lnc , then for each c ∈ {R,L} we have

Pvn−lvU
2 · · ·Pv2U

2|c, v1〉 = ac|d, vn−lv〉, for some ac ∈ C, (6.32)

where d = R whenever vn−lv = vn−lv−1 + 2 and d = L when vn−lv = vn−lv−1−2. Thus

d does not depend on the initial coin state c. For each d ∈ {R,L}, we also have that

PvnU
2 · · ·Pvn−lv+1U

2|d, vn−lv〉 = a|ψ, vn〉, for some a ∈ C with |a| = 1
2b lv+1

2 c
, (6.33)
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where ψ is the coin state given by Equations (6.21)-(6.24) depending on the con-

gruence class of lv modulo 4 and we used the fact that vn−lv = vn−lv+1 = · · · = vn

by definition of lv. We combine Equations (6.32) and (6.33) to get that, for each

c ∈ {R,L},

PvnU
2 · · ·Pv2U

2|c, v1〉 = a′c|ψ, vn〉, (6.34)

where a′c = ac ·a with ac and a coming from Equations (6.32) and (6.33), respectively.

Since qR + qL = 1 and both ψR and ψL in Equation (6.30) are equal to ψ which

appears in Equation (6.34), we see that Equation (6.30) simplifies to Equation (6.26)

as claimed.

Next we claim that, for n ∈ N, if v = (v1, . . . , vn) ∈ Lno and pX(Θ2,V,ρ)(v) 6= 0, then

pX(Θ2,V,ρ)(vn+1|v1, . . . , vn) =



1
2 if vn+1 = vn

1
2 if vn+1 is exactly one of vn ± 2

0 else

, (6.35)

where the exactly one value of vn+1 ∈ {vn − 2, vn + 2} with nonzero conditional

probability depends on the given sequence (v1, . . . , vn) in the following manner:

· If
(i) vn−lv = vn−lv−1 + 2 and lv = 1 mod 4, or

(ii) vn−lv = vn−lv−1 − 2 and lv = 3 mod 4,
then vn+1 = vn + 2.

· If
(iii) vn−lv = vn−lv−1 − 2 and lv = 1 mod 4, or

(iv) vn−lv = vn−lv−1 + 2 and lv = 3 mod 4,
then vn+1 = vn − 2.

In addition we claim that, for n ∈ N and v = (v1, . . . , vn) ∈ V n, if v ∈ Lne ∪ Lnc and

74



www.manaraa.com

pX(Θ2,V,ρ)(v) 6= 0, then

pX(Θ2,V,ρ)(vn+1|v0, . . . , vn) =



1
2 if vn+1 = vn

1
4 if vn+1 = vn + 2

1
4 if vn+1 = vn − 2

0 else

(6.36)

In order to see Equation (6.35), let v ∈ Lno with pX(Θ2,V,ρ)(v) 6= 0 and suppose v

satisfies the conditions for Case (i); i.e. vn−lv = vn−lv−1 + 2 and lv ≡ 1 mod 4. Since

vn−lv = vn−lv−1 + 2, the coin state, d, on the right hand side of Equation (6.32) is

d = R. Using this, the fact that lv ≡ 1 mod 4 and Equation (6.22), we see that

the coin state, ψ, on the right hand sides of Equations (6.33) and (6.34) is given by

ψ = R + L. Plugging into Equation (6.26) and using (6.25), we have

pX(Θ2,V,ρ)(vn+1|v1, . . . , vn) =



1
2 if vn+1 = vn

1
2 if vn+1 = vn + 2

0 else

in this case. The other three cases can be done similarly and thus we obtain that

Equation (6.35) is satisfied for all v ∈ Lno .

Next, for the proof of Equation (6.36), let v ∈ Lne with pX(Θ2,V,ρ)(v) 6= 0. By

Equations (6.21) and (6.23), we can see that the coin state ψ in Equation (6.34) is

given by ψ = c, for some c ∈ {R,L}. Plugging this value of ψ into Equation (6.26)

and using (6.18) we can see that the conditional pmf, pX(Θ2,V,ρ) , of X(Θ2,V,ρ) is given

by Equation (6.36), for all v ∈ Lne .

It remains only to show that Equation (6.36) is valid for all v̄ = (v, . . . , v) ∈ Lnc .

Since the modulus of a in Equations (6.21)-(6.24) is independent of c ∈ {R,L}, we

have qc = 1
2 in Equation (6.29) for both values of c. Note that by Equations (6.21)-

(6.24) we have that the vector ψc ∈ HC which appears in Equation (6.30) is given
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by

ψc =



c if n− 1 ≡ 0 mod 4

L+ (−1)δc,LR if n− 1 ≡ 1 mod 4

c⊥ if n− 1 ≡ 2 mod 4

L− (−1)δc,LR if n− 1 ≡ 3 mod 4

Thus if n − 1 is even, then by Equations (6.30) and (6.18) we obtain immediately

Equation (6.36). If n− 1 is odd, then we must examine the cases n− 1 ≡ 1 mod 4

and n− 1 ≡ 3 mod 4 separately. If n− 1 ≡ 1 mod 4 then ψR = L+R, ψL = L−R

and Equations (6.30) and (6.25) give Equation (6.36). The case of n− 1 ≡ 3 mod 4

can be verified similarly.

We are now set to show hSZdyn(Θ2,V , ρ,A) = 4
3 ln 2. By direct calculation, we have

that

Hµ(Θ2,V,ρ)(X(Θ2,V,ρ)
n+1 |(X(Θ2,V,ρ)

1 , . . . , X(Θ2,V,ρ)
n ))

=
∑
vk∈V

1≤k≤n

pX(Θ2,V,ρ)(v1, . . . , vn)
∑

vn+1∈V
η(pX(Θ2,V,ρ)(vn+1|v1, . . . , vn)) by (5.8)

= µ(Θ2,V,ρ)(Lne ∪ Lnc )(2η(1
4) + η(1

2)) + µ(Θ2,V,ρ)(Lno )(2η(1
2))

= µ(Θ2,V,ρ)(Lne ∪ Lnc )3
2 ln 2 + µ(Θ2,V,ρ)(Lno ) ln 2, (6.37)

where we used Equations (6.35) and (6.36) in equality 2 and

µ(Θ2,V,ρ)(Lnx) =
∑

(v1,...,vn)∈Lnx

pX(Θ2,V,ρ)(v1, . . . , vn) for each x ∈ {c, e, o}.

It remains only to solve for

lim
n→∞

µ(Θ2,V,ρ)(Lnx) for each x ∈ {c, e, o}.

Notice that, by definition of Lnc , we have that

µ(Θ2,V,ρ)(Lnc ) =
∑
v∈V

pX(Θ2,V,ρ)(v, . . . , v︸ ︷︷ ︸
n times

), for each n ∈ N.

76



www.manaraa.com

Using Equation (6.36) n− 1 times and Equation (6.20) to see that pX(Θ2,V,ρ)(v) = 1
N
,

we obtain pX(Θ2,V,ρ)(v, . . . , v︸ ︷︷ ︸
n times

) = 1
2n−1N

and hence

µ(Θ2,V,ρ)(Lnc ) = 1
2n−1 , for each n ∈ N. (6.38)

For ease of notation, set en = µ(Θ2,V,ρ)(Lne ), on = µ(Θ2,V,ρ)(Lno ) and cn = µ(Θ2,V,ρ)(Lnc ),

for each n ∈ N. Notice that e1 = o1 = 0, c1 = 1 and cn = 1
2n−1 , for all n ∈ N, by Equa-

tion (6.38). For each v = (v1, . . . , vn−1) ∈ V n−1 and vn ∈ V let v◦vn := (v1, . . . , vn) ∈

V n. Suppose v ∈ Ln−1
o . If vn = vn−1 then lv◦vn = lv+1 and if vn 6= vn−1 then lv◦vn = 0.

Thus pX(Θ2,V,ρ)(v ◦ vn ∈ Lne |v ∈ Ln−1
o ) = 1 and pX(Θ2,V,ρ)(v ◦ vn ∈ Lnx|v ∈ Ln−1

o ) = 0

for x ∈ {o, c}. Suppose v ∈ Ln−1
e ∪ Ln−1

c . Then v ◦ vn ∈ Lne exactly when

vn 6= vn−1. Therefore Equation (6.36) gives pX(Θ2,V,ρ)(v ◦ vn ∈ Lne |v ∈ Ln−1
x ) = 1

2

for each x ∈ {e, c}. Therefore

en = on−1 + 1
2(en−1 + cn−1), for all n ≥ 2. (6.39)

Equation (6.36) also gives that pX(Θ2,V,ρ)(v ◦ vn ∈ Lno |v ∈ Ln−1
e ) = 1

2 ; using this

together with the fact that pX(Θ2,V,ρ)(v ◦ vn ∈ Lno |v ∈ Ln−1
c ) = 0, we have

on = 1
2en−1, for all n ≥ 2. (6.40)

Therefore

en = 1
2(en−1 + en−2 + cn−1), for all n ≥ 3. (6.41)

We claim that the limits e := limn→∞ en and o := limn→∞ on both exist. It is enough,

by Equation (6.40), to show that the limit e exists. To see this we show that (en)n∈N

is increasing and bounded. We show that (en)n∈N is increasing by induction. Since

e1 = 0 and e2 = 1
2 (by Equation (6.39)), the base case is done. Next, fix n ∈ N

with n ≥ 3, and suppose that em−1 < em for all m ∈ {2, . . . , n − 1}. Then, by

Equation (6.41), it is enough to show that en−2 + cn−1 > en−1. We see that,

en−1 = 1
2(en−2 + en−3 + cn−2) < en−2 + cn−1,
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where the inequality follows by the inductive hypothesis and the fact that 1
2cn−2 =

cn−1. Therefore (en)n∈N is increasing and trivially bounded by 1, and both the limits

e and o exist. Furthermore, for all n ∈ N, 1 = en + on + cn because Ln is a partition

of V ∗ and limn→∞ cn = 0 by Equation (6.38). Hence 1 = e + o = 3e
2 , implying that

e = 2
3 and o = 1

3 . Taking the limit in Equation (6.37), we see that

lim
n→∞

(en + cn)3
2 ln 2 + on ln 2 = 4

3 ln 2.

Therefore hSZdyn(Θ2,V , ρ) = hSZdyn(Θ2,V , ρ,A) = 4
3 ln 2 as desired.

The fact that hSZdyn(Θ2,V , ρ,A) 6= hSZdyn(Θ2, T , ρ, CV ) provides further evidence of

the sensitivity of quantum systems to measurement.

Remark 6.3.4. The results of this section are also submitted for publication in [9].
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Chapter 7

Quantum Markov Chain Entropy

In this section we recall the quantum Markov chain (QMC) approach to quantum

dynamical entropy. This QMC approach was first introduced in [3] in terms of the

Accardi-Ohya-Watanabe (AOW) entropy. Another QMC approach was introduced

by Tuyls in [61] for the study of the Alicki-Fannes (AF) entropy, which was introduced

in [6] and often referred to as ALF entropy to emphasize Lindblad’s contributions.

Finally, a generalization of both QMC approaches was given in [38], where the au-

thors introduced the Kossakowski-Ohya-Watanabe (KOW) entropy. Throughout this

chapter, we will follow mainly the terminology and notations of [3] and [38].

7.1 QMC Entropy: Definition

Fix a stationary QDS (A,Θ, ρ) and an operational partition of unity γ = (γi)di=1 on A.

Let Eγ and Eγ,Θ be the transition expectations defined in Equations (4.14) and (4.15),

respectively, which are both mappings from Md ⊗A to A. Also, let ψ = {ρ, Eγ,Θ} be

the corresponding quantum Markov state and {ρn}∞n=1 be the joint correlations for ψ

given in Equation (4.17). Recall that ψ is given by

ψ(a1 ⊗ · · · ⊗ an) = tr(ρEγ,Θ(a1 ⊗ Eγ,Θ(a2 ⊗ Eγ,Θ(· · · Eγ,Θ(an ⊗ 1) · · · )))),

for all n ∈ N and a1, . . . , an ∈Md.

We will show that the joint correlations, ρn with n ∈ N, can be given explicitly

by applying the lifting E∗γ,Θ : Σ(A) → Md ⊗ Σ(A) iteratively to the initial state ρ,
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where Σ(A) is the set of normal states on A. The lifting E∗γ,Θ was first described in

[2] and is simply the dual of Eγ,Θ.

First, recall that Eγ,Θ = Θ ◦ Eγ (by Equation (4.14)) so that E∗γ,Θ = E∗γ ◦Θ∗, where

Θ∗ is the dual of Θ, and E∗γ : Σ(A)→Md ⊗ Σ(A) is given by

E∗γ (σ) = [γiσγ∗j ]di,j=1 =
d∑

i,j=1
Ei,j ⊗ γiσγ∗j , (7.1)

where Ei,j := |ei〉〈ej| ∈ Md is the standard matrix basis element with (i, j)-entry

equal to 1 and every other entry equal to 0.

For each n ∈ N and ī = (i1, . . . , in), j̄ = (j1, . . . , jn) ∈ {1, . . . , d}n, the (̄i, j̄)-entry

of ρn can be calculated in the following manner:

ρn(̄i, j̄) = 〈ei1 , . . . , ein|ρn|ej1 , . . . , ejn〉

= ψ(Ej1,i1 ⊗ · · · ⊗ Ejn,in)

= tr(ρEγ,Θ(Ej1,i1 ⊗ Eγ,Θ(· · · Eγ,Θ(Ejn,in ⊗ 1A))))

= tr(E∗γ,Θ(ρ)Ej1,i1 ⊗ Eγ,Θ(· · · Eγ,Θ(Ejn,in ⊗ 1A)))

= tr(E∗γ (ρ)Ej1,i1 ⊗ Eγ,Θ(· · · Eγ,Θ(Ejn,in ⊗ 1A))) since ρ is invariant

=
d∑

i,j=1
tr((Ei,j ⊗ γiργ∗j )(Ej1,i1 ⊗ Eγ,Θ(· · · Eγ,Θ(Ejn,in ⊗ 1A)))))

= tr(γi1ργ∗j1Eγ,Θ(Ej2,i2 ⊗ Eγ,Θ(· · · Eγ,Θ(Ejn,in ⊗ 1A))))

= tr(γi2Θ∗(γi1ργ∗j1)γ∗j2Eγ,Θ(Ej3,i3 ⊗ Eγ,Θ(· · · Eγ,Θ(Ejn,in ⊗ 1A))))
...

= tr(γinΘ∗(· · ·Θ∗(γi1ργ∗j1) · · · )γ∗jn), (7.2)

where we used Equation (7.1) in equality 6. We have proved the following.

Proposition 7.1.1. Let (A,Θ, ρ) be a QDS, γ be an operational partition of unity

on A and ψ = {ρ, Eγ,Θ} be the associated quantum Markov state. Then the joint

densities, ρn, of ψ given in Equation (7.2) are exactly equal to the joint densities

ρ(n)[γ] given in Equation (4.10).
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Finally, the QMC dynamical entropy of (A,Θ, ρ) with respect to γ is

given by

hQMC(Θ, ρ, γ) = lim sup
n→∞

1
n
S(ρn) (7.3)

= lim sup
n→∞

1
n
S(ρ(n)[γ]),

where S(·) := tr(η(·)) is the von Neumann entropy and ρ(n)[γ] is given in Equa-

tion (4.10). Notice that the equality between lines 1 and 2 of Equation (7.3) follows

from Proposition 7.1.1. Further, given a subalgebra B of A, the QMC dynamical

entropy of (A,Θ, ρ) with respect to B is given by

hQMC
B (Θ, ρ) = sup

γ⊆B
hQMC(Θ, ρ, γ). (7.4)

The QMC dynamical entropy given in Equation (7.3) has been considered by many

in different contexts. For the AF entropy ([6]) and AOW entropy ([3]), the authors

consider only those Θ’s which are ∗-automorphism, and hence the joint densities are

given by Equation (4.12). For AOW entropy the authors made the further restriction

that γ be simply a partition of unity and considered the transition expectation given

in Remark 4.3.1; when considering the transition expectations in Remark 4.3.1, the

resulting joint densities in Equation (7.2) are diagonal, as we will see in Section 7.2. In

1999 the KOW entropy was introduced in [38] and the restriction to ∗-automorphisms

was not imposed. Moreover, the authors of [38] allow for more generality by introduc-

ing an additional Hilbert space to represent noise. Our main result (Theorem 7.3.9)

of this chapter makes use of some of the ideas introduced in that paper, but we will

not present the full generality here.

We finish this section by stating a corollary relating the KS entropy of a classical

DS to the QMC entropy of the associated commutative QDS.

Corollary 7.1.2. Let (Ω,Σ, µ, f) be a stationary dynamical system and consider

the associated commutative quantum dynamical system (L∞(Ω), Tf , µ) described in
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Section 4.2. Then, for any partition C ∈ Par(Ω) with associated partition of unity γ,

we have

hKS(f, µ, C) = hQMC(Tf , µ, γ).

Proof. This is a simple consequence of Propositions 4.2.1 and 7.1.1. See also the last

paragraph of Section 4.3.

Remark 7.1.3. Let (Ω,Σ, µ, f) and (L∞(Ω), Tf , µ) be as in Corollary 7.1.2 and con-

sider the unital subalgebra B of L∞(Ω) consisting of all finite linear combinations of

characteristic functions of measurable sets. In [62, Section 5.2], Tuyls shows that B

is dense in L∞(Ω), in a particular sense, and that the partition-independent KS and

QMC entropies are equal; i.e.

hKS(f, µ) = hQMC
B (Tf , µ).

7.2 Accardi-Ohya-Watanabe Entropy

In this section we specialize the QMC approach to the Accardi-Ohya-Watanabe

(AOW) dynamical entropy as it was originally introduced in [3]. The only differ-

ences between this and the previous section is that in the present section we restrict

our attention to only partitions of unity and we consider the transition expectation

given in Remark 4.3.1. We will not require that our dynamics are ∗-automorphisms

(as in [3]), but will consider this case separately. We define this transition expectation

below for ease of reading.

Remark 7.2.1. It is worth noting that we could have included this in the previous

section and simply given the QMC dynamical entropy (Equation (7.3)) an additional

parameter for the transition expectation. However, we decided to present the AOW

entropy separately to minimize confusion.
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Let (A,Θ, ρ) be a QDS and γ = (γi)di=1 be a partition of unity on A. Define the

transition expectations Eγ, Eγ,Θ : Md ⊗A → A by

Eγ([ai,j]) =
d∑
i=1

γiai,iγi for all [ai,j] ∈Md ⊗A (7.5)

and

Eγ,Θ = Θ ◦ Eγ. (7.6)

Lastly, let ψ = {ρ, Eγ,Θ} be the corresponding quantum Markov state. Both ψ and

its joint correlations, ρn, are given by Equations (4.16) and (4.17), respectively.

The liftings E∗γ , E∗γ,Θ : Σ(A)→Md⊗Σ(A), where Σ(A) is the collection of normal

states on A, are given by E∗γ,Θ := E∗γ ◦Θ∗ and

E∗γ(σ) :=
d∑
i=1

Ei,i ⊗ γiσγi, (7.7)

where Ei,j := |ei〉〈ej| ∈Md is the standard basis element with (i, j)-entry equal to one

and all other entries zero, for all 1 ≤ i, j ≤ d. In a similar manner to the work leading

up to Equation (7.2), we will give explicitly the entries of the joint correlations, ρn.

To that end, for each n ∈ N and ī, j̄ ∈ {1, . . . , d}n, we have

ρn(̄i, j̄) = 〈ei1 , . . . , ein |ρn|ej1 , . . . , ejn〉

= ψ(Ej1,i1 ⊗ · · · ⊗ Ejk,ik)

= tr(ρEγ,Θ(Ej1,i1 ⊗ Eγ,Θ(· · ·Eγ,Θ(Ejk,ik ⊗ 1))))

= tr(E∗γ,Θ(ρ)Ej1,i1 ⊗ Eγ,Θ(· · ·Eγ,Θ(Ejk,ik ⊗ 1)))

= δi1,j1 tr(γi1Θ∗(ρ)γi1Eγ,Θ(Ej2,i2 ⊗ Eγ,Θ(· · ·Eγ,Θ(Ejk,ik ⊗ 1))))
...

= δī,j̄ tr(γinΘ∗(· · ·Θ∗(γi1Θ∗(ρ)γi1) · · · )γin). (7.8)

Therefore each ρn is a diagonal matrix with entries given by Equation (7.8). If ρ is

invariant with respect to Θ∗, then Equation (7.8) simplifies to

ρn(̄i, j̄) = δī,j̄ tr(γinΘ∗(· · ·Θ∗(γi1ργi1) · · · )γin) (7.9)
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and if Θ∗ is also a ∗-automorphism we have

ρn(̄i, j̄) = δī,j̄ tr(γin · · ·Θ(n−1)∗(γi1)ρΘ(n−1)∗(γi1) · · · γin). (7.10)

The AOW dynamical entropy of (A,Θ, ρ) with respect to γ is given by

hAOW (Θ, ρ, γ) = lim sup
n→∞

1
n
S(ρn) = lim sup

n→∞

1
n

∑
1≤ik≤d
1≤k≤n

ρn(̄i, ī). (7.11)

Given a subalgebra B ⊆ A the AOW entropy of Θ with respect to B is given by

hAOWB (Θ) = sup
γ⊆B

hAOW (Θ, γ). (7.12)

Notice that Equations (7.11) and (7.12) are identical to Equations (7.3) and (7.4),

respectively.

We finish up this section by presenting an example of AOW entropy. This example

was also considered in [3, Model 2], but we present it here for completeness.

Example 7.2.2. Let A be a matrix algebraMd acting on a Hilbert space H = Cd. Let

U be a unitary on H, Θ be the corresponding unitary transformation (Equation (6.6)),

and suppose that ρ ∈ S1(H) = Σ(A) is invariant with respect to Θ∗. Fix an orthonor-

mal basis, {ei}di=1, of H and let γ = (γi)di=1 be the partition of unity with γi = |ei〉〈ei|,

for each 1 ≤ i ≤ d. Then Θ is a ∗-automorphism such that Θn(γi) = |Unei〉〈Unei|.

Hence, by Equation (7.10), we see that the diagonal entries of the joint correlations,

ρn, are given by

ρn(̄i, ī) = tr(γin · · ·Θ(n−1)∗(γi1)ρΘ(n−1)∗(γi1) · · · γin)

=
n−1∏
k=1
|〈Ueik+1 , eik〉|2〈ei1 , ρei1〉, (7.13)

where the equality follows in an analogous manner to that of Lemma 6.2.3. Thus, the

diagonal entries of the joint correlations are given by a homogeneous Markov process

with initial distribution µ = (µi)di=1 such that µi = 〈ei, ρei〉, for each 1 ≤ i ≤ d, and
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transition matrix P = (pi,j)di,j=1 with entries pi,j = |〈Uei, ej〉|2, for each 1 ≤ i, j ≤ d.

Hence

hAOW (Θ, ρ, γ) = lim
n→∞

d∑
i=1

(P nµ)i
d∑
j=1

η(|〈Uej, ei〉|2)

by Theorem 5.2.4. Moreover, whenever µ is P -invariant, we have

hAOW (Θ, ρ, γ) =
d∑
i=1
〈ei, ρei〉

d∑
j=1

η(|〈Uej, ei〉|2).

Notice the similarities between SZ entropy with coherent states instruments in

Corollary 6.2.4 and Example 7.2.2. We will revisit AOW entropy in Subsection 7.3.3.

7.3 Quantum Data Compression using QMC Dynamical Entropy

In this section, we give a QMC dynamical entropy representation for optimal quantum

data compression similar to Theorem 5.5.5 in the classical case. In Subsection 7.3.1,

we recall the notions of indeterminate length codes for lossless quantum data com-

pression and introduce the notions of stochastic ensembles. In Subsection 7.3.2 we

introduce an open quantum random walk representation for stochastic ensembles

before applying the QMC dynamical entropy to the OQRW, obtaining the desired

extension of Theorem 5.5.5. The QMC representation of the OQRW introduced in

Subsection 7.3.2 is new, to the best of my knowledge.

7.3.1 Quantum Data Compression

We will introduce the notions of quantum data compression, extending the notions of

Section 5.5. Similar to that section, all codings will be done into strings of (binary)

qubits. The extensions to d-qubits can easily be done.

We begin with the description of indeterminate-length quantum codes, whose

preliminary investigation began with Schumacher ([52]) and Braunstein et. al in

[17]. We may think of the codes introduced in the previous section as being varying-

length codes; the term indeterminate-length is used to draw attention to the fact
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that a quantum code must allow for superpositions of codewords, including those

superpositions containing codewords with varying lengths. We will follow mainly the

formalisms in [13] as opposed to the zero-extended forms of [53]. A description of the

connection between these two formalisms can be found in [16].

For any Hilbert space H, we will denote by H⊕ := ⊕∞`=0H
⊗` the free Fock space

of H, where H⊗0 = C. We will denote 1 ∈ H⊗0 = C by |∅〉 and refer to it as

the empty string. Further, we set H⊕r equal to ⊕r`=0H
⊗`. Let S = {pn, |sn〉}Nn=1

be an ensemble of pure states, or simply ensemble, where p = {pn}Nn=1 is the

pmf of a random variable X and |sn〉 ∈ HS = Cd such that HS = span{|sn〉}.

The collection {|sn〉} will be referred to as the symbol states of the ensemble S.

An (indeterminate-length) quantum code, U , over a quantum binary alphabet

A := {|0〉, |1〉}, which is an orthonormal basis for HA = C2, is a linear isometry

U : HS → H⊕A . The extended quantum code of U is the linear mapping U+ :

H⊕S → H⊕A given by

U+(|x1x2 · · ·xn〉) = U(|x1〉)U(|x2〉) · · ·U(|xn〉),

for all |x1x2 · · · xn〉 ∈ H⊗nS and n ∈ N, and we set U+(|∅〉) = |∅〉.

The quantum code U is said to be uniquely decodable if the extended quantum

code U+ is an isometry. Throughout this section, we will restrict ourselves only to

the situation where RanU ⊆ H⊕`max
A for some `max ∈ N; i.e. there is a finite upper

bound `max on the length of all codewords.

Remark 7.3.1. The uniquely decodable quantum codes considered in this section can

be considered lossless because we guarantee in the definition that the corresponding

extended quantum codes are linear isometries; i.e. the codings for strings of symbol

states are pairwise distinguishable and hence the original strings can be recovered.

Remark 7.3.2. The authors of [16] allow non-empty strings to map to the empty

string. In their paper, the authors send along a classical side channel to give the
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lengths of the codewords and so that convention is possible. Without the classical side

channel (as is the approach here) allowing non-empty strings to map to the empty

string will cause the quantum code to not be uniquely decodable.

Let S = {pn, |sn〉}Nn=1 be an ensemble whose symbol states span a Hilbert space

HS of dimension d. Consider a classical uniquely decodable code, C, on a symbol

set, S = {xi}di=1, with d-many symbols. We will construct a corresponding uniquely

decodable quantum code, U , from C by identifying the classical binary alphabet

A = {0, 1} with the quantum binary alphabet A = {|0〉, |1〉} ⊆ C2 and the symbol

set, S, with any orthonormal basis {|ei〉}di=1 of HS ; this construction is given in [13].

Fix an orthonormal basis {|ei〉}di=1 of HS and define the quantum code U : HS →

H⊕A by the equation

U =
d∑
i=1
|C(xi)〉〈ei|. (7.14)

It is clear that |C(xi)〉 ∈ H⊗`iA ⊆ H⊕A , where `i is the length of C(xi), and that

{|C(xi)〉}di=1 is an orthonormal set, so that U is a linear isometry. Furthermore, since

C is uniquely decodable, the map U ` : H⊗`S → H⊕A defined by the equation

U ` =
d∑

i1=1
· · ·

d∑
i`=1
|C(xi1)C(xi2) · · ·C(xi`)〉〈ei1ei2 · · · ei`| (7.15)

is a linear isometry for each ` ∈ N0. Since the extended quantum code U+ : H⊕S → H⊕A

is given by

U+ =
∞∑
`=0

U `, (7.16)

we see that U+ is a linear isometry and hence U is uniquely decodable. We will refer

to quantum codes constructed from classical ones by Equation (7.14) as classical-

quantum encoding schemes (c-q schemes). (In [13] c-q schemes are referred to

as lossless quantum encoding schemes.)

Remark 7.3.3. Notice that the symbol states {|sn〉}Nn=1 of the ensemble S are not

directly encoded by the |C(xi)〉’s unless N = d and there exists a permutation σ of
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{1, . . . , d} such that |sσ(i)〉 = |ei〉 for every i ∈ {1, . . . , d}. Indeed U |sn〉 need not

belong to H⊗`S for any ` ∈ N, but can in general be in a superposition of different

lengths. (Hence the term indeterminate-length quantum codes.)

The Kraft-McMillan Inequality (Theorem 5.5.1) was initially extended to the

quantum domain in [53] and subsequently in [13]. Before presenting (a slightly differ-

ent) Quantum Kraft-McMillan Inequality, we will first introduce the length observable

and quantum codes with length eigenstates. The length observable Λ acting on

H⊕A is given by

Λ :=
∞∑
`=0

`Π`, (7.17)

where Π` is the orthogonal projection onto the subspace H⊗`A of H⊕A .

We say that a quantum code U : HS → H⊕A has length eigenstates if there is an

orthonormal basis {|ei〉}di=1 of HS and a sequence {|ψi〉}di=1 ⊆ H+
A with |ψi〉 ∈ H⊗`iA

for some `i ≤ `max, for each i, such that U has the form

U =
d∑
i=1
|ψi〉〈ei|. (7.18)

Note that the |ψi〉’s are orthogonal due to U being a linear isometry. It is easy to

see that every c-q scheme is a quantum code with length eigenstates. Lastly, for each

` ∈ N ∪ {0}, we will refer to the elements of the set {ψi : i ∈ {1, . . . , d}, ψi ∈ H⊗`A }

as the length ` eigenstates of U .

Remark 7.3.4. The quantum Kraft Inequality proved in [53, Section IIC] is more

general than the same proved in [13, Theorem 1], although the formalisms are quite

different. Our version of the quantum Kraft Inequality, presented below, is a gen-

eralization of [13, Theorem 1], but is not quite in the full generality of [53, Section

IIC] (in the forward direction) because we only consider uniquely decodable codes (as

opposed to the more general notion, called condensable codes, considered in [53]).

However, our version does have a converse statement, similar to the classical Kraft

Inequality, which is missing from the aforementioned versions.
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Theorem 7.3.5. (Quantum Kraft-McMillan Inequality) Any uniquely decodable quan-

tum code U with length eigenstates over a binary alphabet must satisfy the inequality

tr(U †2−ΛU) ≤ 1.

Conversely, if U : HS → H⊕A is a linear isometry with length eigenstates satisfying

the above inequality, then there exists a c-q scheme Ũ with the same number of length

` eigenstates for each ` ∈ N.

Proof. Let U be a uniquely decodable quantum code with length eigenstates of the

form

U =
d∑
i=1
|ψi〉〈ei|.

For each n,N ∈ N, let

CN
n = {|ψ〉 ∈ H⊗NA : |ψ〉 = |ψi1〉|ψi2〉 · · · |ψin〉 with i1, . . . , iN ∈ {1, . . . , d}}

be the collection of length N strings consisting of n codewords and let

d` = |{i ∈ {1, . . . , d} : ψi ∈ H⊗`A }|

be the number of length ` eigenstates of U , for each ` ∈ N. Then, by the unique

decodability of U , each element of CN
n has a unique representation as a string of n

codewords and the elements of CN
n are pairwise orthogonal, and hence we have

|CN
n | =

∑
`1+···+`n=N

d`1d`2 · · · d`n ≤ 2N .

Thus

2−N
∑

`1+···+`n=N
d`1d`2 · · · d`n =

∑
`1+···+`n=N

(2−`1d`1)(2−`2d`2) · · · (2−`nd`n) ≤ 1.

Since each `i is at most `max, where `max = max
1≤i≤d

{`i}, we have N ≤ n`max. So if we

sum the above inequality over N we obtain
`max∑

`1,`2,··· ,`n=1
(2−`1d`1)(2−`2d`2) · · · (2−`nd`n) =

`max∑
`=1

(2−`d`)
n ≤ n`max.
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Notice that the left-hand side of this inequality is exponential whereas the right-hand

side is linear. This implies that the left-hand side is bounded above by 1. Hence we

must have that

tr(U †2−ΛU) =
`max∑
`=1

2−` tr(U †Π`U) =
`max∑
`=1

2−`d` ≤ 1. (7.19)

Notice that the inequality in Equation (7.19) is simply a restatement of the clas-

sical Kraft-McMillan Inequality. Conversely, suppose that U is a linear isometry

with length eigenstates satisfying the quantum Kraft-McMillan Inequality. Then, by

Equation (7.19), the classical Kraft-McMillan Inequality is also valid. Thus, by the

converse of the classical Kraft-McMillan Theorem, one can find a classical uniquely

decodable code C which has exactly d`-many codewords of length `, for each ` ∈ N.

The c-q scheme Ũ constructed from this classical code C has the desired proper-

ties.

We would like to find a quantum code which minimizes the amount of resources

required. Unfortunately there are numerous ways to define the length of a codeword

for an indeterminate-length quantum code (e.g. base length [16], exponential length

[13, Definition 6], etc.). Here, we define the length of a codeword |ω〉, where

|ω〉 = U |s〉 ∈ H⊕A , for a unique |s〉 ∈ {|sn〉}Nn=1, as the expectation with respect to the

length observable in Equation (7.17). Explicitly, the length of a codeword |ω〉 = U |s〉

will be given by a function ` : H⊕A → R+, defined as follows:

`(|ω〉) := 〈ω|Λ|ω〉 = 〈Us,ΛUs〉 = 〈s, U †ΛUs〉 =
d∑
i=1
|〈ei|s〉|2`i. (7.20)

For any ensemble S = {pn, |sn〉}Nn=1, define the ensemble state ρS of S by

ρS =
N∑
n=1

pn|sn〉〈sn|. (7.21)

If U is a quantum code on HS define the average codeword length with respect

to the ensemble S by

EL(U) = tr(ρSU †ΛU).
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We denote by Uopt the optimal quantum code with length eigenstates for the

ensemble S if

Uopt := argminU{EL(U) : tr(U †2−ΛU) ≤ 1}, (7.22)

The optimal average codeword length for the ensemble S is given by

EL∗(ρS) := EL(Uopt) = tr(ρSU †optΛUopt). (7.23)

It is shown in [13, Theorem 2] that the optimal c-q scheme (and hence optimal

quantum code with length eigenstates by the converse of Theorem 7.3.5) is given by

the classical Huffman codes. The bounds on EL∗(ρS) in terms of the von-Neumann

entropy follow immediately.

Theorem 7.3.6. The minimum average codeword length for an ensemble S is bounded

as follows,

S(ρS) ≤ EL∗(ρS) < S(ρS) + 1.

Proof. See [13, Theorem 3].

Next, we wish to consider the optimal average codeword length per symbol for

a collection of ensembles {Sk}∞k=1, where Sk = {pn1,...,nk , |s1s2 · · · sk〉}Nn1,...,nk=1 and

probabilities given by the pmf of a stochastic process X. We will refer to such a

collection of ensembles as a stochastic ensemble. Note that, by the definitions of

a stochastic process, stochastic ensembles Sk must be compatible in the following

sense:
N∑

nk+1=1
pn1,...,nk,nk+1 = pn1,...,nk , (7.24)

for all n1, . . . , nk ∈ {1, . . . , N} and k ∈ N. Notice that we allow for the possibility that

preparations of the ensemble at each time be dependent upon previous preparations.

If the preparations of the ensemble are independent and identically prepared copies

of an ensemble S = {pn, |sn〉}Nn=1; i.e. the stochastic process X is made up of i.i.d.
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copies of a random variable X, then pn1,...,nk = pn1pn2 · · · pnk and ρSk = ρ⊗k, where

ρSk = ∑N
n1,...,nk=1 pn1,...,nk |sn1 · · · snk〉. For each k ∈ N, let

EL∗k(ρSk) = 1
k
EL∗k(ρSk) (7.25)

be the optimal average codeword length per symbol for the first k symbols

with respect to the ensemble Sk. Notice that the optimal average codeword length

per symbol is defined analogously to the classical case in Equation (5.16). Then, from

Theorem 7.3.6, we have

1
k
S(ρSk) ≤ EL∗k(ρSk) <

1
k
S(ρSk) + 1

k
. (7.26)

In the following subsection, we introduce an OQRW representation for a stochastic en-

semble before applying the QMC dynamical entropy to the OQRW in Subsection 7.3.3

with the ultimate goal of extending Theorem 5.5.5.

7.3.2 An open quantum random walk associated with a stationary Markov

ensemble

Consider a Markov process X with values in {xn}Nn=1 and with pmf pX. We will refer

to the stochastic ensemble {Sk}∞k=1, with S1 = {pX(xn), |sn〉}Nn=1 spanning HS = HS1

and Sk = {pX(xn1 , . . . , xnk), |sn1 · · · snk〉}Nn1,...,nk=1 spanning H⊗kS = HSk for each k ∈

N, as the Markov ensemble governed by X. Whenever the Markov process is

stationary or homogeneous we will refer to the Markov ensemble as being stationary

or homogeneous, respectively.

Below we consider only stationary and homogeneous Markov ensembles. To this

end, let X be a stationary, homogeneous Markov process governed by the transition

matrix P = (pn,m) and has initial distribution p = {pn}Nn=1. Recall that, since X is

stationary, we have that p is invariant with respect to P . Moreover, the pmf, pX, of X

is given by pX(xn1 , . . . , xnk) = pn1

∏k
l=2 pnl,nl−1 , for each k ∈ N and 1 ≤ n1, . . . , nk ≤

92



www.manaraa.com

N . Setting d = dim(HS), so that dk = dim(HSk) for each k ∈ N, we define the

following sequence of states which represents this collection of ensembles by

ρS1 =
N∑
n=1

pn|sn〉〈sn| ∈Md = S1(HS1) (7.27)

and, for each k ∈ N with k ≥ 2,

ρSk =
N∑

n1,...,nk=1
pn1

k∏
l=2

pnl,nl−1|sn1 · · · snk〉〈sn1 · · · snk | ∈M⊗k
d = S1(HSk)

=
N∑

n1=1
pn1|sn1〉〈sn1| ⊗ · · · ⊗

N∑
nk=1

pnk,nk−1|snk〉〈snk |. (7.28)

For each n ∈ {1, . . . , N} we set |s′n〉 = |sn〉 ⊗ |n〉 ∈ HS ⊗ CN and consider the

quantum-classical (q-c) state

ρ :=
N∑
n=1

pn|s′n〉〈s′n| ∈Md ⊗MN = S1(HS ⊗ CN). (7.29)

Let HC = HS and HP = CN , and define the OQRW over H = HC ⊗HP by

M(·) :=
N∑

m,n=1
Mm,n ·M∗

m,n, (7.30)

whereMm,n = √pm,nUm,n⊗|m〉〈n|, and Um,n is any unitary operator on HC satisfying

Um,n|sn〉 = |sm〉, for all m,n = 1, . . . , N . It is clear that
N∑
m=1

pm,nU
∗
m,nUm,n = 1HC ,

for each n, and henceM is an OQRW. Furthermore, notice that

M(ρ) =
N∑

m,n=1
Mm,n(

N∑
k=1

pk|s′k〉〈s′k|)M∗
m,n

=
N∑

m,n=1
pnpm,nUm,n|sn〉〈sn|U∗m,n ⊗ |m〉〈m|

=
N∑
n=1

pn|s′n〉〈s′n| = ρ,

where the second to last equality holds since p is P -invariant. Hence the q-c state

ρ is an invariant state for M. where the last equality holds since p is P -invariant.

Hence the q-c state ρ is an invariant state forM.
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7.3.3 A quantum Markov chain representation for Markov ensembles

Consider the quantum dynamical system (B(HP ),Θ∗, ρ0), with

ρ0 = trHC (ρ) =
N∑
n=1

pn|n〉〈n|, (7.31)

representative of the initial distribution of X, and Θ∗ the dual of the map Θ which

satisfies the commutative diagram

S1(HP ) S1(HP )

S1(HC ⊗HP ) S1(HC ⊗HP )

Θ

λ

M

a

with

(i) λ(|m〉〈n|) = |s′m〉〈s′n|, for all m,n ∈ {1, . . . , N}, and

(ii) a(·) = trHC (·).

Remark 7.3.7. The definition of Θ above is a slight modification of an optical com-

munication process (see [46, Page 1202]). The main modification we have made is

that we have essentially allowed for a different noise term, |sn〉〈sn|, for each site

|n〉〈n| of the position Hilbert space.

Consider the spectral decomposition of ρS1 ,

ρS1 =
d∑
i=1

ρi|ρi〉〈ρi| (7.32)

and fix an operational partition of unity γ = (γi)di=1 of HP , where

γi :=
N∑
n=1
〈ρi, sn〉|n〉〈n|, for all i = 1, . . . , d. (7.33)

Notice that

d∑
i=1

γ∗i γi =
d∑
i=1

N∑
m,n=1

〈ρi, sm〉〈ρi, sn〉|n〉〈n|m〉〈m|

=
N∑
n=1

(
d∑
i=1
|〈ρi, sn〉|2)|n〉〈n|
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=
N∑
n=1
‖sn‖|n〉〈n| = 1HP ,

where the second to last equality follows by Parseval’s identity, and hence γ is indeed

an operational partition of unity. Let Eγ : Md ⊗MN → MN ; i.e. Eγ : B(HC) ⊗

B(HP )→ B(HP ), be the transition expectation given by Equation (4.14) and let

Eγ,Θ∗ := Θ∗ ◦ Eγ : B(HC)⊗B(HP )→ B(HP ), (7.34)

just as in Equation (4.15). Before proceeding with the construction of the quantum

Markov chain, we give a technical lemma which will be helpful later.

Lemma 7.3.8. Let {Sk}∞k=1 be a stationary, homogeneous Markov ensemble, with en-

semble states {|sn〉}Nn=1, which is governed by a stationary, time-homogeneous Markov

process X with transition matrix P = (pn,m). Let Θ, γ, Eγ and Eγ,Θ∗ be defined as

above. Then the lifting E∗γ,Θ∗ : S1(HP ) → S1(HC) ⊗ S1(HP ) acts on the diagonal

states of S1(HP ) in the following way.

E∗γ,Θ∗(|n〉〈n|) =
N∑
m=1

pm,n|s′m〉〈s′m|,

for each |n〉 in the orthonormal basis of HP . Moreover,

E∗γ,Θ∗(ρ0) = ρ.

Proof. First, recall that Eγ,Θ∗ = Θ∗ ◦Eγ (by Equation (4.15)) so that E∗γ,Θ∗ = E∗γ ◦Θ.

Then, for each |n〉〈n| ∈ S1(HP ), we have

Θ(|n〉〈n|) = a ◦M ◦ λ(|n〉〈n|)

= a ◦M(|s′n〉〈s′n|) with |s′n〉 defined above Equation (7.29)

= a(
N∑
m=1

pm,n|s′m〉〈s′m|) by Equation (7.30)

=
N∑
m=1

pm,n|m〉〈m|. (7.35)

95



www.manaraa.com

Next we consider the lifting E∗γ : S1(HP ) → S1(HC) ⊗ S1(HP ) which is given by

the formula (see Equation (7.1))

E∗γ(σ) = [γiσγ∗j ]di,j=1 =
d∑

i,j=1
|ρi〉〈ρj| ⊗ γiσγ∗j ,

where we have identified S1(HC) with Md and given the matrix representation with

respect to the vectors {|ρi〉}di=1 from Equation (7.32). Then, for each |m〉〈m| ∈

S1(HP ), we have

E∗γ(|m〉〈m|) =
d∑

i,j=1
|ρi〉〈ρj| ⊗ γi|m〉〈m|γ∗j

=
d∑

i,j=1
|ρi〉〈ρj| ⊗ 〈ρi, sm〉|m〉〈m|〈sm, ρj〉 by Equation (7.33)

=
(

d∑
i=1
〈ρi, sm〉|ρi〉

) d∑
j=1
〈ρj, sm〉|ρj〉

∗ ⊗ |m〉〈m|
= |sm〉〈sm| ⊗ |m〉〈m| = |s′m〉〈s′m|. (7.36)

Combining Equations (7.35) and (7.36), for each |n〉〈n| ∈ S1(HP ), we have

E∗γ,Θ∗(|n〉〈n|) = E∗γ(
N∑
m=1

pm,n|m〉〈m|) by Equation (7.35)

=
N∑
m=1

pm,n|s′m〉〈s′m| by Equation (7.36). (7.37)

For the moreover statement, we have

E∗γ,Θ∗(ρ0) =
N∑
n=1

pnE
∗
γ,Θ∗(|n〉〈n|) by Equation (7.31)

=
N∑

n,m=1
pnpm,n|s′m〉〈s′m| by Equation (7.37)

=
N∑
m=1

pm|s′m〉〈s′m| = ρ since X is stationary. (7.38)

Next, we will consider the quantum Markov state ψ given by the chain {ρ0, Eγ,Θ∗},

where ρ0 is given in Equation (7.31) and Eγ,Θ∗ is as in Equation (7.34). Then, for
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each k ∈ N and a1, . . . , ak ∈ B(HC) = Md, we have

ψ(a1 ⊗ · · · ⊗ ak) = tr(ρ0Eγ,Θ∗(a1 ⊗ Eγ,Θ∗(· · ·Eγ,Θ∗(ak ⊗ 1HP ))))

= tr(E∗γ,Θ∗(ρ0)a1 ⊗ Eγ,Θ∗(· · ·Eγ,Θ∗(ak ⊗ 1HP )))

= tr(
N∑

n1=1
pn1|s′n1〉〈s

′
n1|a1 ⊗ Eγ,Θ∗(· · ·Eγ,Θ∗(ak ⊗ 1HP )))

=
N∑

n1=1
pn1 tr(|sn1〉〈sn1|a1) tr(|n1〉〈n1|Eγ,Θ∗(a2 ⊗

Eγ,Θ∗(· · ·Eγ,Θ∗(ak ⊗ 1HP ))))

=
N∑

n1,n2=1
pn1pn2,n1 tr(|sn1〉〈sn1|a1) tr(|sn2〉〈sn2 |a2)×

tr(|n2〉〈n2|Eγ,Θ∗(· · ·Eγ,Θ∗(ak ⊗ 1HP )))
...

=
N∑

n1,...,nk=1
pn1

k∏
l=2

pnl,nl−1

k∏
l=1

tr(|snl〉〈snl |al),

where the “moreover” part of Lemma 7.3.8 was used in the 3rd equality, the fact

tr(A ⊗ B) = tr(A) tr(B) was used in the 4th equality and Lemma 7.3.8 was used in

the 5th equality.

Thus, for each k ∈ N, the state ρk from Equation (4.17) is given by

ρk =
N∑

n1,...,nk=1
pn1

k∏
l=2

pnl,nl−1|sn1 · · · snk〉〈sn1 · · · snk | = ρSk . (7.39)

Therefore,

h(Θ∗, ρ0, γ) = lim sup
k→∞

1
k
S(ρk) = lim sup

k→∞

1
k
S(ρSk) = lim sup

k→∞
EL∗k(ρSk),

where the first equality holds by the definition of the dynamical entropy in Equa-

tion (7.3). We have proved the following theorem.

Theorem 7.3.9. Given any stationary, homogeneous Markov ensemble {Sk}∞k=1, the

optimal average codeword length per symbol converges to the dynamical entropy of the

quantum dynamical system (Θ∗, ρ0, γ), described above, in the following sense:

lim sup
k→∞

EL∗k(ρSk) = lim sup
k→∞

1
k
S(ρSk) = h(Θ∗, ρ0, γ).
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Corollary 7.3.10. Given a Markov process X made up of i.i.d. copies of a random

variable X, the stationary, homogeneous Markov ensemble {Sk}∞k=1 governed by X

has optimal codeword length per symbol given by

lim
k→∞

EL∗k(ρSk) = S(ρS1).

Proof. First notice that X is governed by the transition matrix P = (pn,m)Nn,m=1 such

that pn,m = pn, for every 1 ≤ n,m ≤ N , where p = (pn)Nn=1 is the initial distribution

of X. Therefore

ρSk = ρ⊗kS1 , for each k ∈ N.

Using the construction from above and Equation (7.26), we have that

S(ρk) = S(ρSk) = S(ρ⊗kS1 ) = kS(ρS1),

where the last inequality follows by additivity of von Neumann entropy (see e.g. [65,

Equation 2.8]). Therefore, by Theorem 7.3.9, we have

lim
k→∞

EL∗k(ρSk) = lim
k→∞

1
k
S(ρSk) = lim

k→∞

1
k
kS(ρS1) = S(ρS1).

We finish this subsection by showing that the i.i.d. Markov ensemble consider in

Corollary 7.3.10 has another representation in terms of AOW entropy. The following

result is interesting in its own right, but we were unable to extend it to non-i.i.d.

Markov ensembles.

Proposition 7.3.11. Let {Sk}∞k=1 be a stationary, homogeneous Markov ensemble

governed by a stochastic process X made up of i.i.d. copies of a random variable X.

Then

lim
k→∞

EL∗k(ρSk) = S(ρ) = hAOW (Θ, ρ⊗N, γ),

where ρ = ρS1, γ = (|ρi〉〈ρi|)di=1 (with |ρi〉’s coming from the spectral decomposition

of ρ in Equation (7.32)), Θ is the Bernoulli shift on the half-spin chain M⊗N
d , and

the AOW dynamical entropy is given in Equation (7.11).
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Proof. Set ρ = ρS1 . Then

ρ =
N∑
n=1

pn|sn〉〈sn| =
d∑
i=1

ρi|ρi〉〈ρi|, (7.40)

where the last equality is simply the spectral decomposition of ρ. Notice that, for

each k ∈ N,

ρSk =
N∑

n1,...,nk=1
pn1 · · · pnk |sn1 · · · snk〉〈sn1 · · · snk |

=
N∑

n1=1
pn1|sn1〉〈sn1| ⊗ · · · ⊗

N∑
nk=1

pnk |snk〉〈snk |

=
d∑

i1=1
ρi1|ρi1〉〈ρi1| ⊗ · · · ⊗

d∑
ik=1

ρik |ρik〉〈ρik | = ρ⊗k.

Let γ = (γi)di=1 be the partition of unity with γi = |ρi〉〈ρi| ⊗ 1
[1,∞) for each

i ∈ {1, . . . , d}, let Θ be the Bernoulli shift on the half-spin chain M⊗N
d , and let

ψ = {ρ⊗N,Θ} be the corresponding quantum Markov state. Also, let Eγ be the

transition expectation given in Remark 4.3.1 and let Eγ,Θ = Θ ◦ Eγ.

Then to calculate hAOW (Θ, ρ⊗N, γ), we need only find the diagonal entries of the

joint correlations, ρk, by Equation (7.11). Noticing that ρ⊗N is invariant with respect

to Θ∗ and that Θ is a ∗-automorphism, we can use Equation (7.10) to get

ρk (̄i, ī) = tr(γik · · ·Θ(k−1)∗(γi1)ρ⊗NΘ(k−1)∗(γi1) · · · γik)

= tr(γikργik ⊗ · · · ⊗ γi1ργi1 ⊗ ρ⊗N)

= tr(γi1ργi1) tr(γi2ργi2) · · · tr(γikργik)

= ρi1ρi2 · · · ρik ,

for each k ∈ N and ī = (i1, . . . , ik) ∈ {1, . . . , d}k.

Therefore ρk = ρSk and hence

S(ρk) = S(ρSk) = S(ρ⊗k) = kS(ρ), (7.41)

for each k ∈ N. Taking limits in Equations (7.26), (7.41) and (7.11), we see that

lim
k→∞

EL∗k(ρSk) = S(ρ) = hAOW (Θ, ρ⊗N, γ),
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as desired.

For a more detailed description of the AOW entropy of the dynamical system

considered in Proposition 7.3.11 see [3, Section 4.1].

Remark 7.3.12. The results of this section are also submitted for publication in [10].
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